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Channel Modeling and Threshold Signal Processing

in Underwater Acoustics: An Analytical Overview

1. Introduction

The purpose of this paper is twofold: (1) to combine a canonical

characterization of random underwater acoustic fields or "channels" with

the principle elements of threshold signal processing, in essence, signal

detection and extraction; and (2) to provide, in the process, a necessarily

concise analytic description of some of the principal formal approaches

required to achieve these ends. Accordingly, our presentation is primarily

tutorial, in keeping with the space available. This overview seeks to

provide one possible albeit rather formal framework for handling the

increasingly specialized problems of medium modeling, signal processing,

and performance evaluation, which are now encountered in applications. We

shall lean heavily on some of the author's recent work on channel charac-

terization [I], [2] and space-time siynal processing [3]-[5], as well as

on recent related work on the statistical-physical modeling of nongaussian

noise and interference fields [6]-[11]. (Tutorial background studies for-

mally relevant to the above are provided in [12], [13] for nongaussian

electromagnetic interference (EMI) environments.) In large part we shall

be roncerned with optimal processing, considered as a limiting form of

system structure and performance, to be approximated in practice according

to the inevitable economic and operational constraints of the task at hand.

[For related, suboptimum systems, -, note the parallel telecommunication

examples descussed in [4], [14]-[16].]

Thus, our general aim is to provide a framework for integrating the

effects of the channel (or medium) and transmission and reception of sig-

nals through it, to obtain system optimization and associated performance

measures. The complex acoustic channels specifically considered here are

the essentially linear underwater media of typical ocean environments,

which include volume and interface (surface and bottom) scatter mechanisms,

and other inhomogeneities (e.g., gradients, internal waves, etc.). Ambient

noise mechanisms must also be considered. These include shipping, bio-

logical phenomena, and various geophysical sources, e.g., arctic ice,



seismic activity, etc. For example, see the recent work of Dwyer [17 and

refs. therein] on underice ambient noise. For the signal processing fol-

lowing reception we are mainly concerned here with threshold operation, up

to the point of signal decoding procedures.

Because the channel exerts such a critical influence on the signals

transmitted through it, it is particularly important to include the princi-

pal effects whereby these non-ideal, inhomogeneous media degrade and modify

the original signal. A canonical characterization [namely, one that is

invariant of any particular medium properties (until the medium is specified)]

is needed in order to provide the required generality in compact and manage-

able form, and to allow appropriate approximations in specific cases. Simi-

larly, it is well understood that effective signal processing must incorporate

the relevant characteristics of the channel, as well as the desired signal,

optimally for limiting, optimal performance and at least adequately, for

practical suboptimum systems, which may be more or less close to the ideal,

optimum limits.

A critical element of signal processing is spatial sampling, achieved

through the array or aperture by which source and receiver are coupled to

the medium. In addition to the usual temporal processing, spatial processing

becomes important in reducing minimum detectable signal levels whenever the

interfering noise fields are nonuniform over the array or aperture, as long

as signal wavefront levels are maintained uniform [3]-[5]. This is a further

reason for examining the field structure of the acoustic channel (or any chan-

nel, for that matter), and for including the specific effects of the coupling

arrays in t1ne overall processing program. A second critical feature is the

practical fact that the relevant statistics, i.e., the various probability

distributions which describe the noise fields and, in part, the desired

signal fields as well, are very often highly nongaussian, characteristic of

ship, underice, and biological mechanisms, among others [3], [5]. A third

important concept is that of threshold signal processing, where it is pos-

sible to obtain canonical algorithms, whose forms are independent of the

particular noise statistics and signal structures, and which for suitably

weak signals are both locally and asymptotically (i.e., as processing gain
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is increased) optimum [4], [13], [16]. Applying the specific (non)gaussian

distributions indicated by these algorithms then yields the corresponding

processing and performance. In practice, of course, optimal structures

are limiting forms which are only approximated practically. However,

using the theoretical weak-signal optimum with care to avoid destruction

of the information-bearing portion of the signal, provides an effective

guide to suboptimum algorithms which are "close to" the optimum and which

perform effectively at all signal levels: [18], for example.

Because space here limits the detail with which we can accomplish

our dual task of channel characterization and threshold signal reception

for these underwater acoustic r~gimes, our treatment is basically a "top-

down" approach, proceeding from rather general formulations to more specific

examples which allow us to invoke some of the physics of the problems in

question. [Extensive references assist the reader in his pursuit of ana-

lytical detail and special solutions.] One advantage of the "top-down"

approach is that it readily reveals the broad connections between channel

physics, effective signal processing procedures, and the general communi-

cational tasks of signal detection and estimation in noisy environments,

focused here on underwater acoustic milieux.

1.1 Organization

Accordingly, the present paper is organized as follows:

Section 2 gives an introductory review of the general problem, including

the channel and the generalized communication processes involved.

Section 3, beginning Part I: Medium Modeling, discusses some typical

propagation equations for inhomogeneous deterministic and random

media (Langevin equations) and their formal solutions. This includes

a number of recent results developed for dealing with (linear)

random media, in particular complex scattering channels like the

ocean, which combines a variety of interacting scattering mech-

anisms. [An equivalent diagrammatic formulation is outlined in

Appendix A.1.]

Section 4 presents an outline of a second-order statistical representa-

tion of these channels, while

3



Section 5 gives two important illustrative examples for underwater

acoustics: I, weak volume scatter, and II, an "exact" ocean surface

scatter formalism, with a short discussion of their physical

properties and structure.

Section 6 concludes Part I with a summary of poisson field statistics

which are needed in the description of both ambient and scattered

fields.

Sections 7 and 8, introducing Part II: Acoustic Threshold Signal Pro-

cessing, summarize some of the main results for threshold signal

detection, including space-time sampling, performance results,

and examples of optimum and suboptimum detection.

Section 9 then provides a short summary of signal estimation pro-

cedures, which are closely related to the detection formalism in

the limiting optimum cases. As in detection, these are likewise

applied to threshold signal operation, including a specific

example of weak signal estimation.

Section 10 completes our analytical overview of signal processing

problems associated with the underwater acoustic environment,

including supporting references to the technical procedures

presented in the accompanying References.

[Supplementing the above, Appendix A.1 outlines elements of diagram

methods used here for the solutions of scattering problems, while

Appendix A.2 provides a very concise summary of decision-theoretical

formalism needed in the signal estimation aspects of reception.] Various

new results, appearing in the cited references, are briefly summarized when

appropriate. We stress once more the isomorphism between the channel

modeling and signal processing structures of the (scalar) forms arising

for telecommunications in EMI environments and that reviewed here for

underwater acoustic applications. Finally, we emphasize that what is

ultimately needed for an effective treatment of the general processi.ng

problem is an interdisciplinary approach, ranging from the appropriate

physical models to the methods of statistical communication theory (SCT).

This will be amply demonstrated in the following sections.

4



2. Formulation

The general situation is embodied in the operational relation [2],

[19]

{v} = Ro ( TA TRN ) AT)T o {u} , (2.1)

where {u is a set of "messages" to be transmitted and {v} is the ensemble

of received messages, or decisions, which are consequent upon the set

. TheAT' (N),AR are general operators which describe respectively

the process of coupling to the medium by the transmitting aperture, the

effects of the medium itself on the resulting injected space-time signals,

and the receiving aperture, by which the received field is converted into

a (temporal) wave, for further signal-processing by the receiver itself.

The operators TTo , ToR are temporal processes only, representing the

overall "encoding" and "decoding" of the original and final "message"

sets, {u}, {v, in (2.1). This T includes the actual encoding process

whereby "messages" are converted to signals, and then are suitably

modulated (as narrow-band waves, usually), to drive the transmitting

aperture TAR. ConverselyTR° includes the corresponding decoding process,

as well as any appropriate (usually non-linear) signal processing [20],

as shown in Fig. 2.1.

In our present study we are concerned essentially with the "signal"

portions of (2.1), namely the injected signal, Sin(t), the received wave,

X(t), following the receiver aperture TAR' and ultimately here, with the

detected wave Y = TDet{X} (before any decoding), viz.:

t) T ftX(t)l = T {T T(tN)T S1 22
Y(t) TDet {-!AR-I -AT{Sin } }  -Det!AR' (2.2)

where Sin is an injected (possibly encoded) signal and where

T(N )T {S I =T(N){ G (2 3(M,t) = -M)AT{ in} =TM -T }  (2.3)

is the field at some point (1,t) in the medium in question, and GT is a

source function. Here GT and X(t) are explicitly given by

5
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Figure 2.1 Operational schematic of a generalized channel: here, a
complex, ocean medium and subsequent signal processing (T )

000

G T GT S in G GT (,tISin f = C h hT(t-- tjI )S in (-u E)dT hE hT*Sin),

(2.4a)

and

X(t) Rc f dV R(R) f h R(tT'tIIEVR)cL(!,T )& f j h R*ctdV V
R _C0 R (2.4b)

where the source and array operators, VT R are respectivelyt

RE (tjR,) = f I h R(-[tlRcVR) )Rt- dT TAR)' (2.6)

We remark that h T,R are respectively the filter weighting functions,

now four-dimensional (i.e., spatio-temporal) quantities, of the transmitting

and receiving apertures, which may be time-varying as well as frequency

selective. Their space-time fourier transforms are the (complex) beam

patterns

TR(",f )t h T,R} f de -A h T, -wdT, w=27f,
RV -00(2.7)

with v a vector spatial frequency (which may itself be a complex function

of frequency, f), when the medium is absorptive.

tThroughout, we denote operators by ()
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2.1 The Generalized Channel

For the linear media assumed throughout, the field x obeys a partial

integro-differential equation of the form [2]

(( 0  -) _GT + [b.c.'s + i.c.'s] , (2.8)

where E(O) is a linear (scalar) partial differential operator with E(O)

associated with the homogeneous portion of the medium. Here Q is, in

general, a (scalar, linear) integro-differential scattering operator,

which describes the interaction of the incident (homogeneous) field with

the (differential, or local) scattering (i.e., re-radiating elements) of

the inhomogeneous portion of the medium. Boundary (b.c.) and initial

conditions (i.c.) are, of course, a necessary part of (2.8), as indicated.

Since we are dealing generally with random media, inasmuch as Q

contains random as well as deterministic components, we are concerned with

the appropriate ensembles, {a}, {X}, etc. The ensemble of equations (2.8)

governing propagation of the field is now the Langevin equation ([2]; [20],

chapter 10). Since, formally,

(E(0) (-G T)}, (2.9)

comparison with (2.3) shows that

-TN)= ( ( ) }. (2.10)

This, and Eqs. (2.2), (2.3), are shown schematically in Fig. 2.1.

For the purely deterministic special cases we seek solutions of

(2.8) directly. However, for the general situation of random media, the
"solutions" of the corresponding Langevin equation (2.9) are the various

statistics of the field {}, e.g., the various moments <a>, <cAla2> , etc.,

and the moments of the (linear functionals) of the field, {X(t)}, cf.

(2.4b), e.g., <X>, <XIX2>, etc., and more comprehensively, the various

probability densities (and distributions) of x: and X. Thus we are inter-

ested here primarily in the means <,x>, <X>, the intensities <(2>, <X2>,

and the covariances (-<CI'2>, -<XIX 2>). [Appendix A.1 provides a short

introduction to various methods of evaluating <,>, <tl'-2>, etc.] Accordingly,

7



for the purposes of this paper, we shall define the generalized channel

here as the sequence of operations indicated by (2.2), viz. X(t), or in a

less restricted sense, by the resultant field oC, (2.3), cf. Fig. 2.1.

Consequently, the desired statistical description of the generalized channel

is just that of X = Re, or of a, namely, the various above-mentioned moments.

When X is a gaussian process, these first- and second-order moments are

sufficient for subsequent signal processing (TR in Fig. 2.1), to yield {v}.
.0But, as is often the case, X here is not gaussian, so that at least first-

order distributions of X must be developed for effective processing. This

is discussed further in Section 6.2 below.

2.2 The Role of Scattering Theory

The stochastic character of the medium or channel (as above), arises,

of course, from the random spatio-temporal inhomogeneities within and

bounding the medium. Our quantitative description of the medium now as a

generalized communication channel accordingly must be made in terms of an

appropriate scattering theory, particularly one which is capable of in-

cluding both the geometrical and statistical features of real-world situ-

ations in manageable fashion. We include formally as a special case of

scattering models that of ambient noise, where now the secondary radiating

or scattering sources are replaced by primary sources, cf. Sec. 6.1.

Some recent new approaches [i] provide additional technical and

insightful methods for "solving" the Langevin equations (2.9) of this

general underwater acoustic channel. These include:

I. The concept of Feedback Operational Solutions (FOS), cf. Sec. 3.2

ff., to represent the canonical Langevin equation (2.9);

II. The ability to handle possibly interacting scattering modes

(the so-called "M-form") (Sec. 2.5 of [1]); and

III. The observation that boundaries, wave surface and ocean bottoms

for example, can be treated as distributed inhomogeneities

in an otherwise infinite medium (Sec. 2.2, [1]).

The first item (I) relates the analytic solutions and diagram methods to

a generalized, i.e., four-dimensional, feedback theory and formalism;

the second (II) offers a simple taxonomy for accounting for any significant

8



scattering interaction, e.g., surface with volume scatter, etc.; and the

third (III) greatly simplifies the analysis, at least in the usual far-

field (or "radiation-field") cases, by effectively converting distributed

(or integral) boundary conditions into local, or differential boundary

conditions, i.e., plane-wave, at-a-point b.c.'s.

Finally, we must note that scattering theory, particularly with

respect to acoustic and electromagnetic propagation, is a venerable field

of study, with a correspondingly vast literature. A full citation of the

principal publications to date is well beyond our capabilities here.

However, a useful and extensive summary of modern "classical" methods and

results, chiefly in the electromagnetic cases, has recently been given

by Ishimaru [22], along with extensive references. An earlier and more

mathematical discussion of scattering problems has been provided in the

interesting review paper by Frisch [23]. For acoustical scattering, par-

ticularly in the ocean and at its interfaces, the somewhat later review

articles by Fortuin [25] and Horton [26] regarding surface scatter are

especially noted. In the latter connection, see also [11], [43]-[56];

in particular, Bass and Fuks [48] and [43]-[45],[47], [49], and [50], for

wave-surface scattering. Other important recent studies, devoted prin-

cipally to volume scatter, are described by Flattd et al. [46]. Tatarskii's

significant work [24] is also well known and is also especially appropriate

to the treatment of both acoustic and electromagnetic scattering in the

atmosphere, and contains, as well, many useful references.

An important departure from "classical continuum theory" [25], [26]

is the so-called FOM theory (after Faure [28], Ol'shevskii [29], and

Middleton [31]. This latter is based on first-order, i.e., independent

poisson point-scatter models. Various elements of the author's more

recent approaches [2], which include both the "classical" and FOM theories

as particular components of the general multiple-scatter regime, cf.

Appendixes A.1, A.2 have already been presented in different

stages of evolution and development since 1973, [32], [40]. The essen-

tially mature form is described in [2].
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Part I. Medium Modeling

3. Inhomoqeneous Stochastic Media:
Langevin Equations and Solutions

Starting with the appropriate equations of state, mass, and momentum

conservation, one can obtain by suitable approximations ([2], [21]) of

the resulting nonlinear propagation equations, linearized "wave equations,"

which are special variants of (2.8). It is more convenient, however, to

proceed with the canonical form (2.8) directly. Here C(0) is a linear

differential operator, with c6efficients independent of (R,t), while Q,

also linear, may be an integro-differential (or global) operator and is-

dependent on position QB,t). (This character of Q arises from scattering

element doppler, cf. [36].) For the moment we regard Q, and hence (2.8),

as deterministic.

An important example for acoustic propagation in underwater media

is the case of inhomogeneous, absorptive media [2], for which (2.8) is

specifically [33], [24]

c 03t 2 }(I+ Tx(K,t) -; -c0 [+ (R,t)] - }c = GT,  (3.1)

where
3 2 1 2 32

. (o) = (I + D )V 2 _ 12 2 E 3 Y 3 V2ox 3t2 C2 9t2 ' oxx '
0  0  (3.la)

with T x  T Tox-(I + YX[E,t]) generally. When -rox = 0, (3.1) reduces to

the more familiar "extended" Helmholtz equation

{2  1 2

(V 2 - [I + :(Rt)] --- . -GT (3.2),

0

with

32 (0) 2 1 32 (3.2a)-c2 3t2  c2 3t 2

0 0

10



Here

R x + yy + I z (3.3)

and rectangular cdordinates are assumed throughout, so that V- V2 ,

etc. Specifically, co 
= (constant) wave-front speed, c embodies the

effects of velocity gradients, internal wave phenomena, and/or (weak)

local turbulence; while Tx represents the effects of relaxation absorption

(due to Mg2SO4 and other salts).

With inhomogeneous (but still deterministic) media conventional tech-

niques of solution fail, largely because the medium is not reciprocal,

and there is no general way of applying and evaluating the initial con-

ditions over the various volume integrals which appear in the development

of the generalized Huygen's principle (GHP) when Q 0 (L2]). Moreover,

since these media are space-time variable in their inhomogeneities, e.g.,

SQ(a,tj ...), either locally, or because of local doppler [36], such

media do not support space- and time-harmonic solutions [2], nor are

the standard perturbational and variational techniques of the "classical"

approaches [35] generally applicable, particularly when Q = Q(R,tl ...)

and is a random operator, as will be the case here. Finally, in addition

to all these difficulties is the usually insurperable one of bounded media

when the boundaries themselves are random and moving.

3.1 Random Media

Accordingly, entirely new approaches are required, for manageable

solutions of (2.8) generally (and (3.1) in particular), which embody the

physical realities of the application in question ([2], [21]), and which,

in particular, include both the random character of Q, i.e., E(R,t) in

(3.1) etc., and the random doppler effects [36], as well. These involve

incorporating the effects of boundaries into the now random inhomogeneity

operator Q, as well as different types of scatter mechanisms, e.g.,

Q = 6S + vol + 6Bottom' etc., with 6vol = Qlnh + %Disc' where QInh
represents the continuously (random) variations in medium properties,

while Q Disc) embodies the effects of localized, or discrete particles,

bubbles, etc. A typical geometry is sketched in Fig. 3.1, showing the

usual variety of interactions.

i1



(IT
I

'r n-0

C(z)'COcO-n3

Figure 3.1: Schematic scatter channel geometry of source (T), medium (V),
and boundaries (S,B), with receiver (R), D = unscattered, or
"direct" path, and n is the order of the interactions.
Sufficiently high frequencies are assumed to permit illus-
trative ray paths.

For these linear media, with E( - I = M (which also includes boundary

and initial conditions), it is easily seen that, in operator form, (2.8)

becomes, for each member of the ensemble of propagation equations:

(1-Q)Q = M(-GT) : = aH + a I H M(-GT) (3.4)

where Ia = , etc. We note that aH' (3.4), is the unscattered field, or

field of the purely deterministic, i.e., homogeneous portion of the medium

here. Moreover, because any boundaries are included in Q, MI is replaced

by M, so that now

= M (-GT) , (3.4a)

where the infinite do.ain operator for the homogeneous component of the

medium becomes

12



1,10 Mj , 1 ' ,V -0 OO dR'q(R,tjR'X,t') ( ).R',t' (3.5a)ri M (R,tIR',t') -fdt' f( dRc(,tR-- )( .3a

71( (3.5b)

Here

, A -ik'R'-st'

1 =1 (),s) f dt' f ( e )' tt , (3.5c)
A AS

YO, = Y0 (slp)fdt'e- s  ( )

and

k = I k + I k + t k = 2Trv (3.5d)-- -xx - yy --zz -

is a vector wave number, with v a vector spatial frequency, cf. (2.7).

Here gO is the green's function of the corresponding infinite, homogeneous

medium (Q = 0). For the ocean medium supporting propagation according to

(3.1a), we have specifically the (homogeneous) operator (kernels)

s- (l+ToxS)- st I

C0 ox

y e . (3.6a)
0oCo 4(Q(l+T ox)2

0 [k2(l+-ro s ) + S2/C2] -- R-R'J; k2  k-k. (3.6b)

For the extended Helmholtz equation (3.2), (3.2a), Eqs. (3.6) for the

homogeneous part reduce to the simpler relations

-ps/c -St' s2

= e • 47p (k2  )-1.
o (3.7)

M (R, t R' ,t' -
0)

13



3.2 Field Series and Feedback Solutions

The ensemble solution of (3.4) is now given formally by [2], [21]):

a (., i tH = (I-h)- ; 77 H MQ , (3.8)

where is now the random field renormalization operator (FRO), when

considered over all member equations of the Langvin equation. As long

as <jTI fl (for each member equation), (3.8) supports a series expansion:

H (=H + Co1(n),, 1; (3.9)

(or a. - l -Z)(n+l L, 1I < 1Y 11<00). (3.9a)
n=O

(Usually it can be shown that 11<1, [2]; we remark, also, that

and Q do not usually commute, but commutation can always be achieved

in the proper transform space, usually (k,s)-space [2].) The expansion

(3.9), or (3.9a), is called a Perturbation Theoretical Series Solution

(PTSS), with the convergence condition as indicated formally above.

Equations (3.8), (3.9) are exact (ensemble) solutions. Eq. (3.8),

moreover, is called the Feedback Operational Solution (FOS), since

may be interpreted as a "feedforward" and 0, a "feedback" operator,

cf. [2], [11], in the manner of Fig. 3.2. In fact, the PTSS in (3.9),

expressed as a series of loop iterations formally, indicates computa-

tionally how exact numerical solutions may be approached. The evaluation

of the PTSS may then be viewed as both a problem in modern control and

computational theory, extended now to four dimensions and governed by

partial (rather than ordinary) differential equations and influenced

by a radiation condition (on M), as well as boundary conditions

applied locally to Q.

However, the formal solutions (3.8), (3.9) are not very useful in

their present form since 11is still a random operator. To achieve

useful results the Langevin equations must be converted into various

14



G (dR, t)

Figure 3.2 Feedback Operational Representation (FOR) for the propag,:-
tion Eq. (3.8), for linear inhomogeneous media.

deterministic forms, which represent the various moments of the scattered

field, as we have noted above in Sec. 2.1. This is done in the manner de-

scribed in Appendix A.I and leads to suitable replacereit of the random

by an appropriate deterministic operator 6(d) 6(d)
1etc. for the

first-, second-, and higher-order moments of the field a, cf. Secs. A.1-1.

Thus, vie get a Dysornqujation for <o>, a form of the Gethe-Salpeter

equation for <AI 2> , etc. For example, the FOR of Fig. 3.2 applies now,
with o replaced by <a> and by 6(d) Then by approximating 6(d) etc.,

11
the various terms of the PTSS can be evaluated, although this is not an

easy matter.

Finally, we observe that the ensemble solutions (3.8), (3.9) may

also be insightfully described by equivalent diagram representations,

which are also particularly useful in suggesting appropriate, simplifying

approximations. A concise summary of this approach is provided in Appendix

A.1, some rcsults of which we use below in the text, cf. Sec. 5 ff.

Related methods, involving path integrals and various models of distributed

ocean inhomogeneities,with particular attention to long distance sound

transmission in the ocean, are treated in the recent important studies

of Flatt6 et al. [46]. These offer a variety of techniques for realizing

the inhomogeneity operator Q and its associated statistics (see, for

example, Chapter 10 of [40].)

15



4. Channel Characterization and Statistics

The (random) channel operator ) (T ( )-1 M), cf. (3.8), is

next conveniently written

T (N) 11+ khi( + - _M,(4)

= (4.1)

where we separate the homogeneous (M = N here) from the scatter operator,

I, cf. (3.4) et seq. We note that for ambient fields, in addition to the

desired signal source (Sin), we replace the source function -GT, in the

Langevin equations (2.8), (3.4), by -GT-GA, where now GA is a localized,

or a distributed, ambient "noise" source with an associated field, aA

fl (-GA). In any case, it is at once evident that the medium operators

M,I (;.y) are unchanged.

4.1 Mloments of the Received Field

Mostly for reasons of analytical complexity, channel characterization

is usually formulated in terms of the lower moments, e.g., the mean and co-

variance operators associated with I. The pertinent moment operators

here are, directly from (4.1),

IR = M + <1> KI = < I 12 >  <I 1 > <I

(4.2)

< - + > + <iI2>,

and with higher moments similarly determined. These moment operators

are, of course, deterministic, as a result of averaging. (Note that

11,2 = l(Ri 2,t1 ,2 R',t'), etc., (R1 ,tl), (R2t2 ) being (generally) dif-

ferent points in the field.)

Expressions for the corresponding moments of the received wave X(t)

are found from

X(t) R. = R(M+)(-G G R [I + -(4.3)
T______A___P__H________A
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Thus, the mean received waveform and various second moments are respectively

<X> = > R(M + <I>)(-GT-GA) (4.4)

<XIX 2> R R2 <O1 2
> = RIR 0 2G G = T + GA ' (4.5)

with

1 2Kx(tl1t 2) <X I X2> - <XI1> <X 2> 1 RI2(KC It2> - <a 1> <a 2> )

(4.6)

RIR 2 KI(GIG 2 ),

where from (3.8) and (3.9), and (4.1), we see that all orders of moments

of the inhomogeneity operator Q appear in the above.

Equivalent diagram representations for the scatter operator i and

field covariance operator KI, (4.2), are given in Appendix A.I.

4.2 Remarks on Arrays

The array operators (2.4b) and (2.6), which appear in (4.3) et seq.

for the received wave, can be rewritten alternatively as

f Id f ( )h(nit-T)Rd n, dVR - dr, (4.7)

Here VR once more is the region occupied by the physical array itself (in

the field _t) and 1 locates the array element dn with respect to OR , the

co6rdinate origin of (here) the receiving array, cf. Fig. 4.1. The array

is a space-time linear filter.

In practice, most physical arrays consist of an assemblage of m =

1, 2, .... 1 discrete, but distributed elements, each of which samples

the radiation field, i. Thus, the array operator (4.7) may be expressed

in more detail formally as a vector operator

R = f d7 f ( )h d(n,t-d' = {R i n E (R } (4.8)
R m R-. i m

m
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which defines each "component," R . The relation (4.8) may be simplifiedm
further to the idealized but still very useful situation of "point"

sensors, e.g., L(m) < X : maximum sensor dimension (each m) is alwaysmax o
much less than the acoustic wavelength. Thus, (4.8) becomes

R11point" = {6 (2- m) f dh(t-')R}, = *hmnR (f-fm)} ,  (4.9)

all m; where

CO

hn R - f ( n m m tn &d  (4.9a)
mn-Rd m.m-n R

for temporal sampling tn = nAt; n =1, ... , N, as well. It is convenient

to use j = m,n = i ... J = MN as a single index for space-time sampling,

so that now

R= { = {Rj} (4.10)

is a J-component vector. Consequently, the sampled, received field X

in (4.3) becomes explicitly

I X.: : = {f hm,tn-T)RC(Rm T)dT} ; R = R +
j) h.-m Itn -T)R a I M d -n -0 ~-m

(4.11)

Thus, X = {X j=m,n } is the received data vector, after linear space-time

filtering and sampling. Equation (4.11) is the basic relation, given

the field t., which constitutes the received, sampled waveform . This,

in turn, is the fundamental input to the "signal-processing" systems

noted in Fig. 2.1, which are the principal topic of Part II following.

For narrow-band signals in the medium we can provide a more detailed

structure to hM( )R above. In fact, by combining, i.e., summing, the

m (=I, ... , M) outputs of each receiving sensor with appropriate delays

_T ,,, we can form a beam (in the far field of the incoming signal), e.g.,

X = X I = = 'j A (m)(v - fo )( (tn-i l)I , (4.12)n MR -0_oR o m n M

18



-zin1 aern

th0

R 0PR 0)0

4..12o

0~ -WOO

Fiue . Gemer cof arosy ( in~ co n m sesr wit bea sin

(4.13)

A-U m :-:: - T -r1 /



In (4.12), JA m) and 0m) are the amplitude and phase of the t-h-sensor's

response, at the center frequency (f ) of the received signal, here the

field a. For a vertical array of 2M +I=M sensors, for example, we have

_Z ~ 00
-- m ' '-, .,=zm (M,..o

ATM = mnAc (sine - sine (4.14a)
n c~ o neOR)'

in which Az is the sensor spacing. For a similar, but horizontal array,

r = 1 mAZ and :.AT = mAZ [cos ocose ° - cosoRcosOoR]. (4.14b)

m x m 0co OR R

For a narrow-band signal field 0 is usually known, or findable.-0

Thus, the "beam" can be steered, that is, pointed in the direction of the

desired signal, by choosing ioR =: Io, or setting the path delays Tm in

Fig. 4.1 such that ATM = 0, cf. (4.12a). However, for an ambient or

scattered noise field, each of which is the superposition of a number of

possible (undesired) signal fields randomly phased with respect to one

another, 1 is randomly distributed in space. There is consequently no

distinct noise field wavefront or wavefront direction, and T must be

averaged over in suitable fashion. [See Secs. 8.2 and Sec. 9 of [4], for

example; also, (6.10b) and Sec. 7.3 ff.]. This randomness of 10 in the

case of noise fields usually leads to spatial non-uniformity of the inter-

fering field, which can often be exploited to increase the processing

gain in signal reception, by effectively increasing the number of inde-

pendent spatial noise samples vis-A-vis the (nearly) uniform desired

signal field, cf. Sec. 10 of [4].

5. Ocean Volume and Surface Channels:

The Received Field X

Both the important cases of weak volume scatter in the ocean and

ocean surface scatter are well approximated by at most the scattering

element interacting with the homogeneous field, xH' the former because

multiple scatter effects are usually quite ignorable, the latter from

the physical geometry of the wave surface, which likewise discourages
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multiple scatter except within a typical wave crest-to-crest domain, cf.

Fig. 3.1, (n= 1). (Similar considerations usually apply for ocean

bottoms, as well, cf. Fig. 3.1. We shall, however, consider only the

modes M=S,V, here), observing also that 0(30-40 db) they are effec-

tively independent([21], thesis): there is negligible coupling in the

ocean between surface (bottom) and volume scatter.)

Accordingly, a 1st-Born approximation suffices (as indicated by the

dotted lines in (A.ld), (A.2a), and we write for the received field, X,

from (A.ld):

X + RTo R (-a + 4-0---(j ) = R(CH .IQI1OH) (5.1)
M SorV

- : M- QM M = SV.

= -GT^

The mean wave, <X>, is, with <QM> = , cf. (A.2a):

<x> R<o> t R e-®+->*-)© ) = +

'aH + OLI (5.2)

The second-moment of X, (5.1) in (4.5), is found to be, on averaging

over the phases (p) of the input signal.

<<X I X2> +  <RIR2 <_tI>> <R1R2 [1 + M1M2

(5.3a)

1 2 S 1 q2  k2 1H1 H21>1

k=0 k1 (k >2)

<<X X.> = R R2 (j + - I---o o1 11 ?2 11 22 11 22 12
"homog." "classical: coherent + incoherent multiple-

scatter: incoher.

= unscat. FOM: coh. + incoherent (0)

(5.3b)
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where

<Q>R =---o-o = {v (0 ) = Z ((v(k)R +v(k))};0 E Q -<Q> =<-O-O X(V k=1l

^ (0)O)>Q(o) =<R o, '- '* <* <o>R .

E<>S <qlq2 < >- >R,
< S:space av.xO ; <qetc < > RS- 1 2

(5.4)

via (A.2-6). Note that the (total) average, < >, as in Appendix

A.1 et seq., involves both an average over radiation events and an

average over random spatial (S) and parameter values (e), embodied in

< >S1 cf. (5.4) and, particularly, Appendix A.2.

It is the Decomposition Principle, embodied in 6M' (M = S,V,B), Eq.

(A.2-5) et seq., which allows us to resolve the inhomogeneity

operator into sets of distinct and (statistically) independent entities

as specifically exhibited in Eqs. (5.3). Moreover, and most important,

the entities (k=0, k= 1, k>2) in (5.3) above (and in (5.1), with the

help of (5.4)) have an explicit physical interpretation: Thus, the

terms k=0 contain both the coherent and incoherent radiation contribu-

tions, from all orders (k>1) of radiation interactions, e.g., single-

and multiple scattering (k>2), for example. Consequently, if v(k)

represents the density of (illuminated) k-coupled scattering elements

(k> 1), then <v (k)>R is the coherent radiative contribution, where

< >R is the average over the radiation events associated with the ensemble

of potential (re-)radiating sources. In a similar way

Av(k) = V(k) _ <v(k)>R (5.5a)

is the fluctuation in the density of k-coupled radiating elements, and

is always associated with incoherent radiation. Accordingly, we have

(0) ~ (k)>R+AV (k) - (k) (5.5b)

k=1 ki
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showing the basically coherent and incoherent elements of the scattering

or source region containing these various k>)l types of elements. The

(average) density of coherent radiators is <v(0)> R 
=  <v(k)> R I since

<AV (k)>R=. The number of "radiation events" occurring in a small

region dA of the illuminated or emitting domain A is dN, so that

v = dN/dA = v(0). A taxonomy and interpretation for the dN, similar to

(5.5a,b), can be constructed: One has now

dN (<dNk>R +dn = d (5.5c)
k=1 k=1

The relations (5.6) et seq. obviously apply if one replaces v etc. by

dN; see also Sec. 6.1 following.

Since the medium in question is linear, the scattering or inhomo-
(I)

geneity operator, Q, is a linear functional of the v (k, i.e., of

v(0), e.g., 6 =(V(0)), thus containing all types of radiation inter-

action effects. Moments of v(O), or more generally, of QM, which appear

in (5.2), (5.3) above, are readily indicated: we have

<&> =X{< (0)>} , where <v(O)> = <<V (O)>R> S  (5.6)

This is different from zero, in scattering, if specular reflection

geometry (both on a surface and in a volume) is available. The second-

order moments are instructive:

<Q Q > = (1 v2 >} , (5.7a)

where now

(o)> (0 (0) (0) v (0)
V1  2  1  2 = + << 1 >Rv2 >R>S" (5.7b)

Equation (5.7b) contains both incoherent (-Av(0 )) and coherent terms

(-<AVO )>R), of all orders (k>)1) of coupled scattering or radiating

elements. The associated covariance of Q is
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Q 1  21 2

which embodies wholly incoherent radiation.

We now distinguish two principal classes of radiation models from

which scattered and ambient acoustic (and electromagnetic) noise fields

can be constructed. These are (1): the "classical" cases, where the number

of "radiation events" (e.g., reradiations or ambient emissions) are the

same for each member of the ensemble, so that <v(k) R = (k)

= , all k>O. And (2): the quantized cases, where<v(k)> R ,

and ".Av(k , can be nonvanishing, reflecting the fact that the number of

radiation events is variable over the ensemble. The latter is typical

of the so-called poisson radiation models [11], developed recently for

both scattering [28]-[32], [40] and ambient noise [3]-[6], [52].

For the poisson scattering cases there is the so-called FOM (Faure

[28], Ol'shevskii [29], Middleton [31]) model, based on an independent

poisson point-process, where

(0) i) . (k)
(FOM): v ( ), =; V = 0; k >, 2, (5.8)

namely, all multiple scatter is neglected. For this model the coherent

and incoherent contributions are found to be linear functionals of

<v(O)>R = <v(1)>R , or <y(0)> = <v(1)> _ 0(1) ; (5.9a)

(FOM): K = <j0)(0)>- <y0)> <v(O)>

A( 1 2> 1 2
= <()M V()>> (1)> M,1>

5U_ 0S+ <l R 2 R S 1 ><)2

(5.9b)

where z1 , z 2 embody spatial, temporal and parametric cobrdinates and

(1(z) is the average density of scattering in the illuminated region A.

The FOM model is quasi-phenomenological and avoids dealing explicitly

with the boundary conditions, which are now contained in a (linear) ad hoc

response function Y h(t-t 2) with "cross-section" Yo, developed and
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empirically adjusted for the problem at hand [43]-[45].

On the other hand, in the classical approach, the density fluctuations

of radiation events are always zero, as noted above, so that (5.7b),

<v(0)(0)> =_ <v(O)(O)> is an identity, and (5.7c) describes the covariance1 r^ -^ 1 2 '

of V , or Q. Again, in the usual applications, multiple scatter is

neglected (v(k) = 0, k)2). One has, here for surface scatter cases,

specifically

<(0) R : o(0) ( 1 )  S g (iT-iR) (5.10)

under a Kirchoff approximation, [27], [28], where R,S are respectively

the (average) plane-wave reflection coefficient and shadowing function,

w (=2Trf) is the angular frequency of the incident radiation, co 
= phase

speed of sound in water, g)l1i +C is the normal to
-g .x -Yy-Z x y

the wave surface (Z,t), with Cx = 3 /x, etc., and 1T 1R are unit

vectors from source and receiver to the scattering element on . See

[25]-[27], [37]-[39] as well as [47]-r !], for detailed development of

the classical theory. See Sec. 6 following and Appendix A.2 for

further discussion of these poisson field models.

6. Poisson Statistical Models: Non-Gaussian

Noise Fields and Received Processes, X

Because of the effectively discrete nature of the inhomogeneity

models and the analogous structure of the ambient field sources, the

fundamental statistics of both the field x(Rt) generated in the medium

and the received waves, X(t), are poissonian. This is directly the case

for the ambient noise and weakly scattered field components, which consti-

tute much of the interference in practical operation. In many cases,

i.e., where there may be a few relatively strong sources or scatterers

outstanding from the majority, the resultant field and received process

X are highly nongaussian, while the weaker background is, as expected,

well described by a limiting gaussian process. We note some of the im-

portant results below.

6.1 Poisson vields and Statistics

A (scalar) poisson field ((R,t), here an underwater acoustic field

generated by potentially many independent sources, may be represented by

25



a(R,t) : f X(R,tjz)dN(Z(z)), (6.1)

where z = zRx, xO, in which R represent radiation epochs, ,S are

spatial variables, and e are structural or waveform parameters;

Z = ZR× sxZe is the associated composite space of these quantities;a

is the wave field for a single emitting source. Here dN is a counting

functional, and in general, d, z S -, are random (process and)

variables. This counting functional is represented by

P
dN(Z) = = 1 W(x-p) -6 ) (t-t p), (6.2)

P-

for P discretesources potentially emitting, or reradiating,at times

tp in region A, where

dN(Z) dN(A=p;tp ;) = (dZ)Pe-dZ/p!, p >, 0 (6.2a)

with dZ = asdAde'dt'w 1(e')wl(t'), etc., in which t' is a random emission

time or epoch. For poisson fields, dN is a poisson process obeying (6.2a)

such that for dn = dN - <dN>,

Q-1
<dn...dn = P(Z)dZl R 6(Z +l-Zj)dzj+l; <dnl> =0; (6.3)

j=1

e.g.,

<dnldn2> = Q(zl)6(i- l)djd (6.3a)

where p(,> 0) is the "process density," cf. (A.2-12). Thus, for the mean

field <,> and field covariance K we have, on applying (6.3) to (6.1),

the familiar relations

= f z(Rtjz)O(z)dz; (6.4a)

zK (R1,t ;R ,  = (Rl z ) d z ,  (6.4b)
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with analogous results for the higher moments. Since X = R, cf. (2.4b),

(5.1), the corresponding results for the received process X are

= fL(tlz)p(Z)dz, L = (6.5a)

Kx(tilt 2)-= f L(tllz)L(t2 z)p(z)dz. (6.5b)

th-
The Q - order characteristic function (c.f.) is readily found

to be ([10], [31], Part I)

log FQ(i 1  ... ,iQ ... '. ,n or XI ... ,XQ

Q

< fp(z',z)[exp{i I ( or L)} -1] dz>z, (6.6)
Z=i1

where z = (z',z) and z = t/TS is a normalized time, with XI = (Rltllz),

L = L(t1 IZ), etc. [The limiting gaussian cases follow formally from

(6.6) by expanding the exponent through O( k d and dropping higher-
th addopn ihrorder terms.] The associated Q-h order probability density function

(pdf) is formally, with y = Ior L:

We(y I ,... ,yQ) = f exp {ijy,}Fn(ic) -d =•d ; d. = etc
-0 (27) ...

(6.7)

Evaluating (b.7) based on (6.6) is generally nontrivial. Only the cases

n = 1,2 appear analytically manageable, but fortunately w1 (Y) is suffi-

cient to give us useful results in signal processing applications, as

we shall observe in Part II following. [The case Q = 2, e.g., w2 (yly 2 )

allows us to extend the "classical" theory of signals and noise through

(zero-memory) nonlinear devices to include specific nongaussian noise

processes and fields, as recent work has shown [10].] We remark that

our ability to construct the field covariance (6.4b) allows us to estimate

the degree of spatial processing gain (1 -< M' <, Il) attainable when the
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field is nonuniform in space. Here M' is the estimated number (not neces-

sarily integral) of effectively independent sensors, out of a total M, cf.

comments in Sec. I above, and Refs. [3]-[5]; also Sec. 8.3 ff.

As a specific example, for the many "far-field" situations where it

is meaningful to talk of beams and beam patterns, cf. Sec. 4.2, the basic

(complex) fieldo can usually be described (in the far-zone) by an expres-

sion of the form

10oT i Wf i0d (t-L-Ro-R I/co)
(f I -rSTo) T (X Ifle df,(68

XY -.

where now X in (6.1), (6.4), (6.6) is a = Rei. Here the typical source is

treated as essentially a point source, with a non-uniform beam pattern 0QT'

Fig. 4.1, and X = R -RI/c , with Xm = IR -r m/c the distance of the m--th
o - o in -o-i 0

array element from the typical source, and y>O. Here, also,

-o i ia (t-T) -i~t

ST(flz) z(7 f a(t-T)S.(T)e dT)e dt, w = 27f, (6.9)
_00 -00

ia
represents the source waveform si with a fading mechanism, ae ; d

( l+E = doppler coefficient in (6.8), while z (=T-t) is a (normalized)

time, cf. (6.6).

From the above we can show, for instance, that the covariance of the

interference output of the receiving array, i.e., X(t) = Rc, (4.12), be-

comes, for these sources narrow-band about frequency f
0

Kor B) -a->Re[Ma(T)D < K0( t)Kl(T)R 2 2 (A orB R2- 1 0R~ O' 0l -0-

(6.10)

whereMa (-) = complex covariance of the fading, ae I a ; DW = <e o >

is the doppler "smear" factor, and

2> A Anam, <e(20i/A (- R)(rm- )
o m A e21' oA'oo

(6.lOa)

KO is the typical interforinq source covariance (of s")
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represents the averaged beam pattern, over all the different angles (e0o,po')

of arrival of the various interfering source wavefronts; Am = (complex)

element weighting, A = normalization factor. For example, for an equally

weighted vertical array (4.14a) when wl(0oo) = 1/72  < 00 </2;

OP 0 < , i.e., (00,po) are each uniformly distributed, for the mm' element

in (6.10a) we get

< OLm) O(m' )*> 2ri A mm' sineoR J(7 m) mm ,W
R= e mJo(2 Amm,) Am, = (-' )Am/x o ,
-0O

(6.10b)

where AZ is the interelement spacing and Xo (= 27c 0/W0 ). Generally, the

random angles of arrival "smear" the beams. Moreover, Eq. (6.10b) in

(6.10a), (6.10) shows at once the (statistical) nonuniformity of these

interference fields, as seen over a typical array, when the array is

large enough, e.g., 2MAZ/X o = L/Xo = 0(1 or more) here, cf. J (2TA mm,/X)

in (6.10c), etc.: the field covariance as sampled by the array elements is

clearly quite nonuniform. [We shall return to this point in Sec. 7.3 ff.]

6.2 Non-Gaussian Process PDF's

As we have emphasized in previous work [4], [61-[8], [10], [131,

[15], [16], [52], involving EMI interfereiice, ana anaiuyuusly here for

underwater acoustic applications, most noise environments can be char-

acterized in three main classes of nongaussian process or field:* Class A,

or "coherent" noise, producing negligible transients in a typical receiver;

Class B, "impulsive," i.e., broadband vis-a-vis the receiver, generating

transients; and Class C = Class A + Class B, in various combinations.

Typically, Class A--for example, reverberation, ship noise, etc.--or

Class B (biologic (shrimp), ambient ice, microseisms, impulsive ship noise,

etc.), predominate in most instances.

*An important exception is the case of one (or a small number) of inter-

fering signal sources of known emission behavior, whose deleterious effects

can often be removed by selective temporal (= frequency) or spatial deletion.
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For our subsequent detection and estimation algorithms (Part II ff.),

we shall need a more sophisticated statistic than just the process or

field covariance functions, although these are always useful. Specifically,

we shall need the (first-order) probability density of the (total) inter-

ference, X(t), w1(xIHo), as obtained from (6.7), since we are going to

sample in such a way as to produce independent noise samples, cf. Sec. 7

ff. For this we set Q= 1 in (6.6) and carry out the resulting evaluations,

along the lines described in [6], [8]. The result, finally, for Class A
th

interference is found to be, typically, at the m-- array element now

2 21,) _-22(m)/

-(m) 2 2/2-A 2A

Fl(iEX(m))A+G e G e [1 + Ali)( 2

(6.11)

where ciM) mean intensity of the gaussian component, 2) = mean

intensity of the (usually much stronger) nongaussian interference, both at

the n1th - array element. Here because of the assumed (local) homogeneity

of the noise field, o(m) = Im) = A = overlap index or "usage"G G1 2A 2A' A
parameter [7], which is typically 0(0.1-1) for nongaussian underwater

acoustic unterference. The quantity is a correcting factor, which

can noticeably modify the "tails" of the associated pdf, cf. (6.11),

(6.12), when the potentially interfering sources are widely distributed

in space ("Quasi-canonical" cases, [8]).

When these sources are not so widely distributed, Y 0, and we have

the more familiar "canonical" and approximately canonical Class A cases.

For these latter the pdf associated with (6.11) is

2x m n / 4 ,-,2

-A AP e mn pA

wl(xmnIHO)A+G = e A A ,A(6.12)p=O p p

where F 1 G,2 2A; 2)PA = (p/ A A+)/( I+) and xn n

is the normalized input data sample, at array element m and at time tn*
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(For the "anatomy" of the noise parameters F , 2A see [7], [8].)

Class B interference is similarly developed: we find that [6]

-X2in/_ ( x2(X IO(-I)' Ap (X2 _ ) F _ P-; 1 ~
W1 (Xmn HO)B+G , p!A pO 2 F L 2 1 2 2;

(6.13)

Here -= is a parameter based on source distribution (~- and popaga-

tion law (-x), while 2 is a normalization factor [chosen to cut off the

tails of (6.13) at some very small residual probability and insure that

fwldx = 1: (6.13) does not support a finite intensity, e.g., x-  ., unless

the pdf is suitably truncated.]

Finally, we emphasize again the canonical nature of these nongaussian

models: the forms of the pdf's are independent of the particular noise

mechanisms involved. Of course, for specific applications, we must esti-

mate the relevant parameter values and insert them appropriately in the

chosen algorithm. Thus, we may say that signal processors based on these

noise models are parametrically adaptive, beased on the above statistical-

physical models of the acoustic noise or interference environment.

6.3 Summary Remarks (Part I)

In the preceding sections (Part I) we have outlined a formal apparatus,

illustrated by some simple examples and specific results. This apparatus

provides a general approach for obtaining the needed noise, signal fields,

ana received process models, which constitute the inputs to our sub-

sequent signal processors, namely, signal detectors and estimators. Key

features of these inputs which must be taken into account are (i) the

generally nongaussian character of the accompanying noise, or additional

acoustic interference from localized sources; (ii) the spatial, as well as

temporal character of the noise and signals; (iii) the salient features of

propagation in a typically inhomogeneous medium which includes discrete,

continuous, and distributed inhomogeneities; and (iv) the spatial coupling

to the medium itself. The controlling factors, as always, are 'timately

physical. These, in turn, may be expected to impact strongly upon the
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design and operation of the subsequent signal processing, as we shall see

in Part II following. Finally, but not least, we stress again the direct

analogy between the underwater acoustic field and process models outlined

here and corresponding EII models developed for telecommunication appli-

cations: the formal structures, and ambient noise models (neglecting

multiple scatter) are the same, as are the basic processing concepts,

so that results from the latter discipline can be translated to the

former, with appropriate attention to the governing physics. In any

case, our approach emphasizes the concept of the generalized channel,

in the manner of Fig. 2.1 above, where in addition to propagation ques-

tions, we include the necessarily coupled signal processing ones, cen-

tered on the critical limiting threshold cases.

Part II. Acoustic Threshold Signal Processing

7. Threshold Signal Detection

We are now ready to outline the aforementioned canonical approaches

to signal processing, when the desired signal is weak compared to the

noise background. Here, of course, the desired signal (and undesired

noise) are the received, scattered and/or ambient acoustic fields, now

sampled by our distributed arrays (cf. Sec. 4.2). Our principal tasks

are to detect a desired signal, and then, having determined its existence

in the accompanying noise, to extract sotre one or more desired attributes

of the signal, namely, to perform so-called "signal estimation."

As before [7], [15], [16], we focus our attention primarily on the
"on-off" threshold, or weak-signdl detection situation, involving now

nonuniform interference fields (I), where the decision process is the

hypothesis test: HI.Sel vs. HO:I alone. A canonically optimum theory is

again possible: canonical in the sense that the formal results for de-

tector structures and performance are independent of any detailed physical

mechanism, as well as of specific signal waveforms and noise statistics

[16]. Although the results are no longer optimum for stronger signals,

they are generally absolutely better than for weak signals, which in

turn is normally satisfactory for applications. Moreover, an optimal
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theory suggests reasonable suboptimum procedures which can have the advan-

tage of structural and operational simplicity, as well as performance

close to optimum [15], [16].

Three modes of detection are noted: (i) coherent, when signal epoch

is known precisely at the receiver; (ii) incoherent, when signal epoch

is unknown; and (iii) composite, in which a sum of modes (i) and (ii) is

employed, to take advantage of any signal epoch information available [16].

Since weak signals are postulated, large processing gains (here space-time-

bandwidth products J) are needed to achieve acceptably small probabilities

of decision error. This ensures that the detection algorithm in question

will be asymptotically optimum (AO) (as J--, or J>> 1 practically),

and normally distributed under HO, H1 provided a suitable bias term Bj

(independent of the data and determined a priori) is employed. (The im-

portance of the proper bias, generally, is stressed in [16].) These re-

sults enable us to calculate performance directly in canonical form.

For specific applications we must, of course, "calibrate" our canon-

ical algorithms to the particular interference environment. This requires

establishing: (1) the Class (A, B, or C) of interference, and (2) esti-

mating the relevant parameters of the associated probability densities

wl(x)A, wl(x)B, etc., [15], [54]. This can be done if we can construct

the EMI scenario, for example [4], [8], or directly by empirical observa-

tion [6], [7]. Thus, these (detection) systems are adaptive and include

adaptive beam-forming here. Their often considerable improvement over con-

ventional (i.e., "matched-filter" or correlation) detectors stems from this

essential feature, [7], [16].

In this necessarily concise overview we confine our effort to an out-

line of some of the principal results of the extensions of our earlier

work to include spatial processing [3], [4]. The present section is

organized as follows: Sections 7.1-7.4 provide examples of general and

specific space-time processing algorithms, the latter for independent

sampling; [Section 6 earlier presents some results for nongaussian field

models]. Section 8 ff. treats performance, in both optimum and suboptimum

cases. Section 8.3 completes our detection treatment here, with a brief

discussion of the principal assumptions and conditions.
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7.1 Canonical Space-Time Threshold Algorithms

To obtain the desired optimum (binary) decision algorithms Z* we form

first, as usual [20], [541 the generalized likelihood ratio, now extended

to include spatial as well as temporal sampling, e.g.,

%log AT(X) = g*(xe) + t*(xle), (7.1)

where J=MN, with N=number of temporal samples of the received data

X= (x.X m .xj, at each of the M sensors, e.g.,m = (Xml ..

X mn=j ...X mN), with j = 1,... ,mn,... ,J=MN, alternatively, over all sensors.

Here e denotes an input signal-to-noise ratio; g*, t* are respectively

the desired algorithm and a remainder series, which vanishes prob. I

under H, H1 if certain conditions are satisfied [cf. Sec. 7.4 ff.].

For these threshold cases log Aj is expanded about6 = 0, with one

or two terms in the data (x) retained, depending on the mode of reception.

The required bias term, B*(e), is obtained from the average over {x} with

respect to the null hypothesis H0 of the next nonvanishing term in the g*-
expansion. Thus, we write formally

9' = g* = eF l) J + -' F2 (x) J + O(N3, 4), (7.2)

where for the coherent and incoherent detection modes we have

g() = eFl() + B*(e 2 )coh; Ba-coh 2 <F2 ( )J>Ho + log P;
0 (7.3a)

g*() 4o 4 ;)H
inc = eT F2 (x)J + B(64)inc B* = (e 4 + log 0.2J inc 0 (7.3b)

The specific structure of F.1 F2 depends, data-wise, on the basic pdf

wj(Ie=0) of the interference alone, and on the desired signal waveform

structure. Here o = p/q, p+q= 1, (p,q>0), where p,q are respectively the

a priori probabilities that the data sample x contains (or does not contain)

a signal. The decision process (5) is
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decide H if g*>log K or decide H0 if g*<log K (7.3c)

where K is a threshold in the usual way.

Both because of much needed technical simplicity, and the fact that

it can be shown [4] that comparatively little further improvement in per-

formance is obtained by fully correlated sampling vis-a-vis (non-sparse)

independent (space and time) sampling, we focus henceforth on this latter

case. Moreover, although the theory has been developed for the general

case of nonstationary and inhomogeneous fields [4], we shall describe

results here only for the (often) applicable local stationary, homo-

geneous r6gimes.

7.2 LOBD Algorithms

Locally optimum Bayes detector (LOBD) algorithms for coherent and

incoherent detection are found under the above detection modes (7.3a),

(7.3b) to be explicitly [4]:

A. Coherent Detection

M N
g()co B* - I Z x )<e > J = MN (7.4)

-cocoh m=1 n=1 ,n m,n

with

<0mn> = <a s(m)>; Z(x L log w (x=H m n (- m' n)mn on n ' m,n) dx 1o w x = 

(7.4a)

B. Incoherent Detection

M N
giV(x)inc :Bj-inc + 2L! I I {ZLm,n~ m , , n ' + Z ' n mm"n ~~'nI

if,m' n,n'mnmm n ' < 'nmn ,

where now (7.5)

<Omnem',n 2 (m') (7.5a)'m 0 n-n' 131 n-n'I

with
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^ {-m' I = <s(m)s/m' )>

mlnnI a ; a' m((7.5b)

and

m d n cf. (7.4a).m,n dx x m,n

In the aboves m ) = s(m)(t ) is the normalized signal waveform atth n nt <s(m)2> W ;a m  = a a (t er

time tn at the m- sensor, w n > aon on =a(tn)here
(signal field uniform over the array), with a on = A (t n)//V-2, in which

¢=I=(V+N) is the sum of the intensities (at the receiving aperture) of

the nongaussian interference I' and gaussian noise N. (Here m) ,

because of the postulated homogeneity and stationarity, cf. above.) The

normalized data samples are x = X j=m,n/ - , with the desired signal

vector S = {ams(m ' Here w is the first-order pdf of the
- -on n 1tital interference: because of independent sampling wj = mnH w1(Xm,n)

7.3 Signal Structures for Coherent and Incoherent Reception

Specifically, we note also that in realistic situations involving

fading and doppler uncertainties the desired signal structure is

5 (m) = /2cos((wo+wd) (tnco) G)oATm , tn = nAt
Sn nn

(7.6)

where wd = random doppler shift, c = co = signal epoch which is a priori

known in coherent detection; p = possible phase modulation, for tne

typical narrow-band signals used in most acoustic environments. The net

path delay, Tm' from the mt-h - element to some selected reference point

associated with the array, is given by

(1o- ooR) r/co = (-\o- -\oR " r-nf o 00

(7.7)

where 1 01OR are respectively the unit vectors in the direction of the

(incoming) signal wavefront, and the main axis of the beam formed by
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the equivalent spatial alignment of the M elements; rm is the (vector)

distance from the th- element in the array to the reference point. Thus,

when the beam is steered to the signal direction, l)R = 1.0, cf. Fig. 4.1, and

AT = 0, SO that s(m) = Sn: the sampled signal component is now independent
m n

of m in (7.4), (7.4a) above, for coherent detection.

For the incoherent cases (7.5), (7.5a,b), (where -o is now random),

we have, for a fixed signal wavefront direction,

(nmnI  = e - jdcoS[W (n-n')At + ko(Io-!oR)Armm,],

ko = 2r/X° = w0/C0  
(7.8)

with Ar - r -r m , and there is no degradation of the beam pattern. This
signa =-m-m (mm)

ign(correlation function, pn' is clearly maximized (when summedsigna corrlatio func iWn-n 1'

over m,m', in (7.5), for example) when the receiving beam is pointed at the

normal C1o) to the incoming signal wavefront, e.g.,i 0 = -oR Thus,
(mm')o= 2R

0(m'j = pjn also. Alternatively, when the desired signal wavefrontPIn-n n-n'j

is perturbed, arriving from various different directions, beam structure

is destroyed and n(mmn' is much reduced, with a consequent serious degrada-is dstroed ad Pn-n

tion of performance [cf. (6.10b) and Sec. 8 ff.]. Doppler smearing

(/ d > - a 0), of course, always reduces the wavefront (and waveform)

coherence of the desired signal [cf. (7.6), (7.8)], similarly degrading

performance, as one would expcet [cf. Sec. 6.1 above].

Finally, we note that because of the postulate of independent sampling,

space and time processing are interchangeable operations, cf. (7.4), (7.5):

we can process over the array (m= 1,...M) at any given instant (t n), or

equivalently, at each array element (m), over time (n= 1...N). The choice

is a matter of technical convenience. In addition, we observe that for

coherent detection, (7.4), (7.6), (7.7), single beams are formed (-s m),
n

while in incoherent detection product beams are generated (rn,m') in (7.5).

7.4 The Bias and Asymptotic Optimality (AO)

As explained above, cf. (7.3a,b), the bias terms for g* are found here

to be
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S (2)M N (m) 2 (m)>2

BJ-coh 2 m1 n= on n

generally. With fading and doppler smear (7.9) becomes

B* log P = B*  -a (1-f)MNL2HI(NA t~w) (7.9a)J-_coh lo i Bcoh o 1i d)

where O<1-n=Xao>2/<a2>< I is a fading parameter (no fadinq: q=O; deep

fading: n= 1), and

H '= Xe-dt = erf x, (7.9b)

represents the effects of doppler smear.

Similarly, for the incoherent cases one gets

1 M N (2)2 )2 2(mm' (mm') 2

B* Y- J(L~1 -2L )m' ,, +2L(2  (mm' I~n )J-inc L {mm, nn, In-n' 1"n-n'im,m n,n' (m)acm')> <S(m)Sm(' )> (7.10)

o o n n

which reduces for rapid (one-sided) fading and negligible doppler to

B* log P~ B * = -a jMN(1-n)L} 7.)jBJ-inc 0 (7.10a)

(For no or slow fading one sets n = 0 in (7.10a).) The result (7.10a)

assumes N >>1 (M>I) and the usual nongaussian noise situation 2(2),

where specifically [4], [16]

Lk(2 ) _<z2>Ho, all mn, = f 0(w/wl)2WidX, - 0, cf. (7.4a); (7.11a)
- c0

L (4 )  70 (w/wl)2Wldx (> 0). (7.11b)
-00

Thus, L(2 ), L(4 ) are statistics of the (total) interference, I, including

the gaussian noise component.
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For asymptotic optimality, ("AO" as J--, or J>> 1) a sufficient con-

dition--always fulfilled for small (> 0) input signals, e.g., 1>>ao>0--

is that

varH g <(g) 2>0 - <g*> 0 (oj)2 = -2B5 (= var H gj). (7.12)

As noted above, this permits us to terminate the expansion (7.1) in the

form (7.2), for large J(=MN), and still ensure the desired small prob-

abilities of decision error in the decision process (7.3c). [An equivalent

(sufficient) condition for AO is that g*, as J - -, is gaussian, with

variance (a 2 and means log T / 1 2 under HO, HI respectively, cf.

Sec. 2B of [16].] (In most earlier work the proper bias was omitted,

cf. Secs. lIb, IV, VA of [16], so that the resulting detection algorithms

are neither locally optimum nor AO.)

7.5 Suboptimum Algorithms

Suboptimum algorithms are handled in the same general fashion.

Instead of the quite complex characteristics (~Zn) in g*, (7.4), (7.5)

one can use much simpler forms:for the simple correlator one sets Z. - xmn'm,n mn

and for the hard-limiter correlator, Zm,n -' gn xm,n (with the Z',n term

omitted in (7.5)). The former is well-known to be (threshold) optimum

generally in gauss noise, w1(x) = e-x2/2/42
- , while the latter is threshold

optimum in Laplace noise, w1 (x) = (v2)-1 exp(-,2Ix1), <x2> = 1; <x> = 0,

cf. Sec. III of [Ii].

8. Threshold Detector Performance

Because of the large samples involved (J= Mf>> 1) and their independence,

the test statistic g* is asymptotically normally distributed, under both

H0 and H1 with varn g*, provided the input signal is suitably small [cf.

(7.12) and II,B of p16], etc.]. This permits a direct calculation of per-

formance. For the important detection cases here, we have the familiar

Neyman-Pearson (N.P.) form [15] of the probability of correctly detecting

the presence of a desired signal:
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-(*) (*) - (I ))]} , (8.1)
02

where *F is the (conditional) false alarm probability of incorrectly

deciding the signal is present when only noise occurs, again 0(x) = erf x,

cf. (7.9a), and

(j) =Vvar (; (8.2)

For suboptimum detectors we drop the superscript *. Explicitly, (*) is

given by

(*) 1)1 0 oJ +log(K /i) (8.3)
cF 2 L2s2 /2ao

for W, cf. Eq. (7.3) et seq. In the usual applications, p= 1, i.e.,

p=q=! . (In communication applications, when the decision criterion in

the so-called Ideal Observer [15], [16], o = 1 also, i.e., p =q= 2 and one has

a symmetric "on-off" channel for which the error probability (per decision

or per baud, symbol, etc.) is now

P(*) = PP( -i - oJ [1 i 1; K = 1]. (8.4)

e e 2  2/2

8.1 Performance Examples

The key element in measuring performance is clearly o , cf. (8.1)-
(,\uv

(8.4). We list below a variety of specific forms for o
od

A. Coherent Detection: ( 2J)c 2a (1-n)MJL(2)H (NA twd) _ 2a, 2*coh 1 ocob '

(8.5)

cf. [4], [15], [16].

. )2 = -2a 2 MI t( ) 2

8. Incoherent Detection [4]: (oJ2 n 2 o (8  J1IQ,-I,]

= 2ao 2Ht (8.6)
0 Inc'

where QN is the signal structure factor, which in these stationary,

homogeneous cases becomes explicitly
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+ -'2 2
Q 1 1 2 1 O 1 cf. (7.8) et seq.,

n,n I(8.6a)

which is maximized when the beam formed is directed at the desired

signal source.

Here IT* is the space-time-bandwidth product, and the a2 factor is

defined as the minimum detectable signal, <(ao)>in'

Evaluation of QN for various conditions of doppler "smear" and fading

gives results like [4]:

2 (2 2 (GJ2= a2(MNL 2)/2)2o( inc 2-sided, slow-fading; 0 o inc 1-sided, no,

coherent signal (Awd O) slow; coh. sig.

(8.7a)

-2
a ° {2N21-n)L(2)/2.8.b

(°j)inci I-sided, very rapid; (8.7b)

coh. sig.

In all cases here we note that a* -: increasing the "space-time-bandwidth

product" by increasing the number of both the independent spatial and temporal

samples (M,N) clearly improves performance, from (8.1), (8.4).

It is usually convenient to relate the probability controls, here

to the processing gain, flu, and minimum detectable signal, <ao>min,

by means of the following relations, obtained from (8.5), (8.6) in (8.7),

(8.4), viz.:

<a2>(*) (C(*) )2/1(* )  <a 2>(*) : C(* )  (88o min-coh - N.P. coh' o min-inc N.P/Vinc ' (8.8)

wher _ (2(*)-1 + -2 p* (*)Irwher 0-1 ) 1I p */ specifically. Fromwe N.P . (2 I (- oJ

(8.8) vs. (8.5), (8.6) we find f* at once.

For nongaussian noise fields L 2 ), L(4 ) can be quite large 0(10 4,10 ),

typically, for, say, Class A noise with AA = 0.3, rA = 10 . Similar orders

of magnitude are noted for typical Class B cases; ([9]; see Figs. 4-7 of [16]).

However, for gaussian noise L(2) = 1, L(4 ) = 2.

Figure 8.1 shows the probability of detection, p , versus the
minimum detectable signal, < 2  

N ,  (*)
<o>min~ with processing gain I1 as parametpr,
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Figur1, coherbt detection 8.1) f factor b in dB, ta incoherent

detection with the same processing gain, cf. (8.5) vs. (8.6). For example,

with a processing gain of 80 dB, /c 10- , and a required p 0.80, we
see that <a,-2>r - -33 dB, while <a 0 . -66 dB.

o mn-inc

8.2 Remarks on Suboptimum Performance

The performance of suboptimum systems is readily obtained canonically
(in the threshold rgime) if we define a degradation factor by the

ratio

,(8.9)
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Here 11 is thp processing gain for a suboptimum detector, employed against the

same (not necessarily gaussian) noise. This factor, d' measures by how

much the minimum detectable signal for the suboptimum system must be

raised vis-a-vis that of the optimum to achieve the same performance,
P = P* (or PD =P), viz. oJ = a* in (8.1), so that
0 D 0&

< incoh =<admincohdcoh a in-inc = <a2>m inc -inc•

(8.10)

For example, for a coherent detector optimized against gauss noise,

L(2  = 1 in (8.5), so that 1d = (L(2))-1<< 1 measures the degradation

when such a detector is used in strongly nongauss noise instead of one

properly "matched" to this noise. Thus, if N =10-5 , A = 0.3, we have
()A 'A

L A ) =50 dB, Fig. 4, [16], so that the optimum detector can detect a

minimum detectable signal 50 dB less than the correlation detector in

this noise. In a similar way, two suboptimum detectors can be compared:
,(1 vs. 2) (1)/ (2) (1) (2)

2 ) /1) (2 /), . The quantity /d is also seen to be

equal to the Asymptotic Relative Efficiency (ARE, e>0). [See Section

IV,,Bof [16].]

8.3 Discussion: Threshold Detection

In the preceding sections we have sketched some of the main results

for the development of optimum threshold detection in nongaussian and

nonuniform EMI fields. This extends earlier work, [55]-[57], for example,

to include in addition to the nongaussian field, the often important

situation where the fields received by an antenna (array) are not uniform

over the array elements, basically because of the size of the antenna

vis-a-vis the wavelengths of the received fields. In addition, we have

outlined briefly various elements in the construction of statistical

physical models of the acoustic field, including the needed pdf's.

Our analysis has postulated independent (noise) samples in space

and time. The latter are practically achieveable without much diffi-

culty by slightly increasing the sampling period (0(50%)). Independent

spatial sampling, however, is not generally possible with non-sparse

arrays, because of the non-uniformity of the noise-field and unequal
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spacing of the zeros of the correlation functions of this field, cf.

(6.10), (6.10a,b). In practice, this means that effectively one may

have I<M' < (<)M equivalent "independent" spatial samples: some spatial

processing improvement over a single element (or single beam, M= 1) is

obtainable, but not the full M-factor theoretically achieveable if

independent spatial sampling is truly obtained. Nevertheless, for such

noise fields as (6.10) (in addition to improving beam resolution), it

can be worthwhile to use relatively large arrays (vs. x ), as M'> 1,

and.*. o*J . /M'N', cf. (8.5), (8.6), is larger than a*N M = .

Of course, algorithms like (7.4), (7.5) are not optimum when the

sampling is not independent, but they are comparatively close: pre-

liminary estimates for typical Class A interference indicate that only

0(2-3 dB) improvement is theoretically obtainable if all correlations

were taken into account, i.e., if one uses the J-joint pdf wj(x)N

rather than U. W1(x) for the basic pdf used in the general expansions

(7.2)-(7.3b) above. This in one compelling argument for developing

"independent-sample" algorithms; another is that there are no tractable,

or known Jh-order models (J> 1,2) for the underlying pdf, wj.
It is instructive to observe that beam-forming is automatically

achieved on setting the relative path delays ATm , (7.7), equal to zero,

regardless of the particular geometrical locations of the array elements.

Thus, we can have arbitrary distributions of elements, but still recon-

struct the desired signal wavefront by proper delays (i.e., maximize
(mm')ID' cf. (7.8)). Beams formed here in this manner are adaptive, weighted

beams. The important trade-offs are coherent space-time signal wavefronts

vs. incoherent (uncorrelated) noise field samples, thus increasing the

effective statistical sample under HI vs. H0 , i.e., lowering the (here)
minjoint probabilities of Type I and II errors, e.g., m (qc*+p6*), =

decision rule, viz. (7.3c).

In a broad sense these optimum algorithms seek first, thus, to
"match" the receiver to the noise, via Zm,n' cf. (7.4), (7.5), and then to
"match" the desired signal to these processed input data, Z(x ,n). It

is the "tails" of the noise pdf which are signficiant vis-a-vis gaussian

noise: the nongaussian interference falls off much more slowly, so that

the transfer characteristic, , between x-input and ?-output includes a
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limiting or clipping feature, as well. For this reason, limiters can

be good approximations to the actual characteristic, giving performances

not many dB worse than the theoretical optimum. Of course, actual

differences will depend on the particular EMI field to which the receiver

is adapted, i.e., for which the field parameters (Q29 A, T', a, etc.)

have been estimated. Finally, it is emphasized that threshold detectors

of the above types are useful and give noticeable improvement over con-

ventional systems when the space-time-bandwidth product, a , is large,

so that the required small probabilities of error P() can be obtained.e 
2(For a discussion of asymptotic optimality, AO, bounds on <a2(* ), etc.,
0 min

as well as some numerical examples, see again [15], [16].)

9. Threshold Signal Estimation

As is well-known, in the Bayes theory [20], [58] estimation is the

"twin" of detection: the former aims to determine the particular charac-

teristics of a desired signal, e.g., amplitude, waveform, phase, frequency,

etc., once the signal has been detected, while the latter is concerned

with the basic question of the desired signal's presence or absence. In

a very broad sense "estimation" can be regarded as an extension of de-

tection: both subsume appropriate cost functions for the derivation of

optimal algorithms and for the measures and comparisons of performance.

In fact, in a more general Bayesian sense detection and estimation are

the two, coupled component elements of the composite process of signal

extraction: detection and estimation joined together by a suitable cost

function, reflecting the frequent situation where it is not completely

certain, for the estimation process, that the desired signal is present,

which, in turn, results in biased estimators [59].

Here, however, we shall assume that the desired signal is known a

priori to be present, and that certain waveform and parameter features of

the signal are to be estimated, when the accompanying acoustic inter-

ference is highly nongaussian (the "classical" situation of gaussian

noise is a special case of our general model). flow the estimators are

unbiased. In any case, we may expect the estimation process, particularly

optimum estimation (in the Bayes theory [58], [20]), to be closely related
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to the detection process, since both are derived from approximate likeli-

hood functions [60], [61]. This will be seen explicitly in the canonical

threshold theory outlined below (cf. Sec. 9.1).
From the practical underwater acoustic viewpoint, signal estimation

is a common communication requirement: signal amplitude (or level),

waveform, frequency, epoch, modulation are each important elements of

the reception process, whether it be telecommunications, radar, tele-

vision (and their analogues in acoustical and optical regimes). Designing

receivers for effective threshold performance usually ensures better (but

not necessarily optimum) performance at strong-signal levels. As in the

detection cases [16], an optimal theory provides limiting estimation

algorithms and performance, which are models to be approximated in prac-

tice. Also, as in detection, a canonical theory is possible in the weak-

signal cases (as long as reasonably large time-bandwith products are

permitted, of course: the desired signal must be "extractable" under the

observational constraints). Such a canonical theory also provides standards

against which practical, suboptimum (i.e., approximate) algorithms can be

evaluated and compared [15], [16].

As in threshold detection theory [16] a fundamental problem now in

developing effective threshold estimation algorithms is to obtain ex-

pressions of limited complexity, which retain their optimum nature when

sample size (J) becomes increasingly large. The latter is the case, of

course, when the signal is weak, since large effective data samples are

required for small expected errors in the resulting estimates--analogous

to small probabilities of decision error in optimum (threshold) detection.

However, just as in detection [16], without a suitable "bias" term in the

extraction algorithm this algorithm demands progressively more terms in

its approximative form. This rapidly defeats the key requirement of

processing feasibility, particularly for signals and interference of

practical use, and destroys analytic tractability as well.

Accordingly, we parallel our preceding summary review of (binary) space-

time threshold detection theory (Secs. 7, 8), and present now a concise

summary of optimum and suboptimum threshold signal estimation, for the

three generic modes of reception noted earlier for detection: (1) coherent
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estimation, (2) incoherent estimation, and (3) composite estimation, where

a linear combination of the coherent and incoherent algorithms is employed.

[Because of spatial limitations we shall confine our explicit illustrations

to the simplest situation of amplitude (or scale) estimation, where signal

waveform is otherwise known at the receiver. However, the effects of fad-

ing, doppler, and other propagation conditions can be included, as in the

detection examples above, Secs. 7, 8. The general formalism outlined here,

nevertheless, is quite capable of providing explicit algorithms in the more

complex situations.involving waveform, frequency, phase estimation, etc.]

As before, the interference is additive, generally nongaussian, and is

either Class A or Class B interference (i.e., respectively coherently or

incoherently received in the (linear) front-end stages of a typical narrow

band receiver, accompanied by (additive) external and internal gaussian

noise [7], [15], [16], [18]. These interference models account for most

of the practical cases.

9.1 Canonical Optimum Threshold Estimator Structures; AO/LOBE Forms

A canonical optimum estimator is represented by y* = y*(21X), where

=- (I,. ..,M) is the parameter set to be estimated on the basis of X;

the received data, a refers to the pdf of (see Appendix A.3). As noted

at the beginning of Sec. 9, the critical problem in developing explicit

locally optimum threshold estimators (LOBE's) from the general (all signal

level) forms (A.3-6), (A.3-8) is to terminate the desired series approxi-

mation properly, i.e., without an excessive number of terms and in such a

way that these estimators are asymptotically optimum (AO), as well. This

situation precisely parallels that for optimum threshold detection, already

treated by the author in [15], [20]. In fact, the approach here is to con-

vert the various likelihood functions 7Fn oW above, from which the LOBE's

are determined, cf. (A.3-4), (A.3-8), into likelihood ratios, equivalent now

to a suitable statistical test among two distinguishable hypothesis (H1, H2),

etc. Then LeCam's results [60] as applied by Levin [61] are used to obtain

at least a sufficient condition of AO for the "LOBD" form from which the

resultinf AO LOBE is then constructed, according to the error function

(QCF, SCF, etc.) chosen.

A. Equivalent LOBE's for LOBD's

We consider first the SCF case, cf. (A.3-7), with the optimizing rule

(A.3-3) for generating the UILE's, Y*. Since the (linear) operation of
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differentiation in (A.3-8) is unaffected if we subtract log Fj X0 ), we

see that (A.3-8) becomes

(log ^) + ZSF 0,' m 1,.. .M (9.1)
e~~~m {mo o + l)JmSC F } 6

where e = ( ,0'), in which % is the particular parameter to be esti-

mated, with
Z(IO) lg<Fa{X,S(6^'e')}>e/ FJ(X I 0 )l (9.1a)

J-SCF = lo M Jj

now the (logarithms of the) generalized likelihood ratio representing the

test states H1(SeN) vs. H0 (N), which is the familiar "on-off" or "signal

and noise" vs. "noise alone" situation in detection theory.

In a similar way we see that the rule (A.3-6) for obtaining the

Bayes estimators for the QCF (A.3-5) can be equivalently expressed in

terms of another likelihood ratio by

Z (21)(xje)
{21) ( J QCF d% } (9.2){m QCF = {fee e~

where now

ZQCF1) log <F( )> /<Fd(XI)> (9.2a)
J-QCF - gI. 3(SSe>')

This likelihood ratio, (21) represents the binary-signal detection
J-OCF' rre

situation where we test H (S $N) vs. (HI(SeN), i.e., S S^, that
2mm

portion of S containing 6^ only, and S( )  S , cf. (9.2a). Thus wem10
note that ¥y SCF is a linear functional of j10), cf. (9.1), whereas the

{_QCF}are (monotonic) nonlinear functionals of 521) cf. (9.2).

Having cast these estimators in likelihood ratio form, we can now

proceed directly as in the previously developed optimum threshold detec-

tion theory ([13], [16], Appendix A.3; [15], Appendix) to obtain the

needed approximate forms for j = g*(x,) + t (x,e) g*, where it is

shown that as J-.-, tj0 prob. 1 on H vs. H0 (or H2 vs. H1), i.e.,

,j g* is AO as J- -, cf. (7.12) et seq. Because of the functional

relations (9.1), (9.2), -* is likewise then AO, as well as LOBE, i.e.,

is AOBE (asymptotically Bayes estimator). Now specifically (9.1), (9.2)

bec ome
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Falogal(% ) ag§-SCF" :

SCF:UMLE I ' + aeC 0 (9.3)
L m m m

QCF:LMSE {y*} = {f-QCF de , (9.4)
m ~m

where the g* are given explicitly in the next section. A sufficient con-

dition that gj is AO is that gj be asymptotically normal, with means

T[var g* ,var g*1 ] = H0 , H1 ; or H1, H2, and variances varog3 5scF0 J-SCF ' 1 J-QCF ' ' 9 J C '

var 1gjQCF , respectively. [Note, also, that because we have assumed the

desired signal is a priori known to be [55] present, logp = log(p/q) of

the detection forms, cf. (2.4) of [20], are omitted here in the forma-

tion of Z(10), (21) above.]

B. AO Forms of the

From Sec. 3.2 of [15], and from [20] suitably adapted, we have spe-

cifically the needed structures of g* required in (9.3), (9.4) for de-

termining the associated AO LOBE's. Specializing to the practically

useful cases of independent data (i.e., noise) samples and locally sta-

tionary noise processes, which we shall henceforth assume in the remainder

of our treatment, we have once more, cf. Sec. 7.2

(1) Coherent Reception (SCF)

J-coh J -coh - <a 2 2 ojj>a, Zj (9.5)

(2) Incoherent Reception (SCF)

1 *2 1 J(=MN)
2 - oJ-inc + + J i+i )<aoiaoj sj >  (9.6)
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(3) Composite Reception (SCF)

gJ-comp gJ-coh +gJ-inc

where, as in Sec. 7 et seq., aoi = ao(ti), etc. is a (normalized) signal

amplitude, si = s(ti.,e,') is a normalized signal waveform, such that
<s2> = 1, and Zi = d log w.(x.)/dx. £ = d9i/dxi, where w1(xi) = first

order pdf of the interference (nongauss + gauss) above, in the usual way.

Specifically, here and henceforth in Sec. 9, a a ) ( s =  m) , since
oj on ' n snc

j m,n, cf. Sec. 7.2 et seq. In this way we include the spatial, as well

as temporal description of the sampled waves. Thus i = (m,n); j = (m,n'),

when used in the incoherent cases.

The proper bias terms are given by B* = -o 12, cf. (7.12), or

(7.9), (7.10), with (7.11), etc. [We must be careful here and henceforth

to distinguish between the various averaged signal parameters (0') and

the unaveraged ones {0}, which are to be estimated.]

Similarly, for the QCF the associated g* needed in (9.4) are

(1) Coherent R",eption (QCF)

d-coh J-coh •j[<aojSj>, - <a o.s> (9.9)

(2) Incoherent Reception (QCF)

(21)* =B (21)* 21_ Z Z. J 1 (9.10)
%j-inc B-inc OF i (Ap)(Zi.j+ . ), (9.I0

and (3)

9 21)* pjC (g(21)* +9(21)*

g -comp QCF J-coh + J-inc) QCF'

cf. (9.7). Here (A1o)ij -1 <aoiaojisj> ,' - <aoiaojSi sj> and the

proper biases for AO behavior are
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B(21)* J-coh L(2 ) J

B -co- 2 [<aosj>0  - <a .s.>2] (9.11)J-coh 2 2 j j ' oj j

= (21)* 2 ) 2 2 )2 R

B(21)*c J-inc 1 . (L(4)-(2 )6 + 2L j' (9.12)
13

Jic2 28iji

where ARi = <aoiaoySS.> - <aiao.Si s .> ( (Ap) ).we Rj i e i"

C. Suboptimum Estimators

We parallel the treatment in [15], [20], where g* is replaced by

the suboptimum gj, now appropriately adapted to the estimation structures

(i.e., hypothesis test) required by the SCF, QCF, etc. We illustrate

the procedure with the case of SCF and the use of simple (cross- and

auto-) correlation receivers, well-known to be threshold optimum in gauss

interference. Now (9.5)-(9.7) reduce to this case directly on setting

= -xi (:. V = -1), and .*. L (2)ss = 1, L(4) 2. Similarly, for the
1 1 1 gaUs gauss

QCF cases (9.8), (9.9), we make the same substitutions, in both the bias

and data portions of gC

In the important cases of clipper-correlators, which are optimum in

Laplace noise and which are well known to be effective against non-

gaussian noise, cf. [15], we replace Zi by sgn xi (and omit V), with

appropriate modifications of the bias terms, cf. Sec. 3.3 of [15] for

details. The basic pdf's for which these various correlation detector-

forms (and hence estimator forms via (9.1), (9.3))are optimum, are re-

spectively given by w1 (X) in Sec. 7.5 above.

Finally, it is important to note that these LOBE's [obtained from

(9.1), (9.3)] are only practically AO and LOB when 92(=<a0>) is sufficiently

small, as in detection, i.e., there exists an <a2> (<< 1), with
2 o max

<a2> <a'>x such that for a 2><a2 > the threshold optimal character
0 o max  0 o max

of g3 breaks down and becomes suboptimum. At larger input signals g*

(* gj now) and hence -Y*+Yetc., may or may not be monotonically better,

in absolute terms, than g*, a ax . Usually, for sufficiently strongJ' o o-max
signals, g* (now gj) is absolutely better, unless the information-bearing

portion of the signal is destroyed by the algorithm itself, e.g., clipping
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destroys waveform detection/estimation, but not phase parameter extraction,

for example.

9.2 An Example: Amplitude Estimation

with the SCF: Coherent Reception

The simplest useful example is that of estimating the scale (or ampli-

tude) -a0 of an otherwise fully known signal waveform received in (gen-

erally) nongaussian interference. This is also the problem of estimating
^. ̂2

signal intensity is = a* .

Here we have m = 1= ao , with 'all other relevant signal parameters.

With coherent reception, signal epoch E is precisely known, e.g., 02

and we select <s.> = s. = /2, with independent noise samples..j £ j-max
Thus, we write <s i>G, = Smax =V2 here. Physically, our present

example can represent slow fading, whose changes are negligible over the

data acquisition period.

Accordingly, (9.5) reduces directly to

(g -L 2)a-ao/2 I (xi). (9.12)- oJ0 j=1

Applying this to (9.3), with Om = 01 a0 , gives

l(a°)' L(2)a 2  ao/2 Z(xi)] 0, (9.13)

L 0 ao o

whose solution yields the desired estimator a*(x).
0

To proceed further, we need to know the a priori pdf of 9 1(=a ),

e.g., , l(a0 ). Let us assume, then, that ol(a ) = I/Aa 0 , a uniform pdf

on (0-< a0 a +), and zero elsewhere. Consequently, a'(a o ) = 0,

O<a 0 < Aa (the contribution of the i-functions at 0, Aa0 provide no
meaningful solutions). Solving (9.13) gives

I J -
- Z./JV/-L(2 2

Sa coh j a2 < < 1 (9.14)SCFJo

uniform
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The optimum threshold estimate of signal intensity is accordingly

( 2 2Z j 2 2  2

= = 2/2JL 2 (9.15)
SI

Here P, and .'.a*2 are UMLE for the assumed uniform pdf of a0 , and simul-0 0
taneously CMLE for any (meaningful) pdf of a0 . Moreover, <> a,

because <Z>H1 (= <2>1) = -/2 ao L(2, and we can show that

varla0 a0*2 (l + 01)) - T2 var aold>> , (a2 << 1) (9.16)

from <ZZ > 2 L(2)2i j); + a L (i j). Thus, a* is2 a• i 0 lim ^,
unconditionally unbiased, e.g., <a*> 1  a-(= Aa /2) and a *-a o , from
(9.16).

The "smallness" condition on a2 is (from Sec. 6.4, Eq. (6.71) of [15])
0

ao<1 var<2< L(2)/[L( 2 ,2 ) _ 2L (2)2 X L4(22) = <(Wl/Wl)4>
a0  2 2 - x2o

0  (9.17)

2 2Here, from al(ao) = 1/Aa we have a -(Aa ) /3 in (9.16) to establish

an upper bound (a m) (<< 1) for which a2 4(a2) and *(x) is then LOBE
omax o omax o i h

and AO.

As a numerical example, consider a Class A noise for which r = 10-4 ,

A A = 0.5, so that x0 = 1.7.10 -4 (from Fig. 5.6 of [15]): .x 0 dB = - 37.7 dB,

with the result that -a-<< 2 38 dB or (Aa0 )2 <<-37.7 + 4.8 = -32.9 dB.0 2
Typically, we might choose (a o)max = -43 or -48 dB here. This means that

sample size J should be large enough to ensure (9.16), i.e., J = 0(102 or

more) appears sufficient.

9.3 Discussion

First, let us note that our illustrative example is readily extended

to the estimation of waveform itselfr= fSj}: 9 S , and we get a series

of relations like (9.13), if o(&L) = 0io1(%); otherwise one has M-coupled

equations to be solved for 0 = S". Also, if the QCF is used, the structure
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of the optimal estimator is generally much more complex, due to the non-

linear functional relation between g* and y*, cf. (9.2). If the parameters

to be estimated appear functionally in the waveform S(t,Q) then one ob-

tains functional solutions for the estimators.

The important general result here (for all signal levels) is the

explicit functional relation between the (optimum) detection algorithms

and the resultant optimum estimators, cf. (9.1), (9.2): detector structure

provides the initial analytic relation, from which the estimator is the

appropriate functional relation, the form of which depends on the choice

of cost function. Thus, to carry out the derivation of the desired es-

timator, we must start with the appropriate detector algorithm [16]. The

evaluation of estimator performance is provided by using the estimator,

Yj , in the expressions for the average error (or risk), cf. (A.3-2).

Finally, one important extension of the analysis outlined above is

to the frequently occurring situation (mentioned at the beginning of

Sec. 9) necessitating joint detection and estimation, when it is not

known precisely that the desired signal is present [59].

10. Concluding Remarks

In the preceding section we have outlined a comprehensive methodology

for handling the general problems of acoustic signal transmission and

reception in and through complex underwater media. Our approach has in-

cluded the following important channel features: (1) inhomogeneous volumes

and interfaces, both deterministic and random; (2) spatial as well as tem-

poral effects; (3) the inherently nongaussian character of major components

of the random fields arising both from ambient sources and produced by a

variety of scattering mechanisms; (4) space-time processing by the dis-

tributed arrays which couple source and receiver to the medium; and (5)

threshold detection and estimation of signals in these generally nongaussian

environments.

In addition to the above topics we have touched upon a variety of

specific methods and techniques for channel modeling, including operator

formalisms and diagrammatic methods. A number of new results are also

discussed: poisson field models and statistics, canonical threshold
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estimators and estimates, for example, as well as measures of threshold

detector performance which specifically incorporate the r6les of the

receiving array, signal structure (with doppler smearing and fading), and

mixed gaussian and nongaussian noise components in the interference.

Spatial processing gains are seen to be achieveable in the usually

encountered nonuniform noise fields by suitable spatial sampling, for

both detection and estimation, in addition to the capability of beam

formation. Suboptimum, as well as optimum processing algorithms are

noted.

The preceding sections are intended to be a general guide to the

formulation and treatment of specific propagation and signal processing

problems, wherein attention is called to the many physical features which

may have to be taken into account in individual problems. The accompany-

ing references should provide the in-depth analysis and/or specific

results needed at each stage of the problem in question. As stated at

the beginning, our general aim here has been to provide an overview,

keyed to the realities of specific applications, and at the same time

to exhibit a unifying and interdisciplinary approach, within which the

many special modeling and processing tasks of underwater acoustic inter-

ests are embedded.'
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Appendix A.1 Diagram Representations and Solutions [2]

Diagram representations and methods are very useful and compact forms

for describing field interactions as is well known [23], [41]. For some

of our subsequent results we shall include diagram equivalents, along with

the corresponding analytic expressions, defining the symbol "vocabulary"

in a consistent way. For our ensemble results [(3.4)-(3.9)], we write

the equivalent ensemble diagrams:

FOR: -GT  ({} ) (A.la)

{Q}

H

FD: - = + - - o ; (Eq. (3.4); (A.Ib)
I {cc I LH M {Q}1,{tot}

FOS: 2 _ 1 : M4 ( = -iM,(GT) (A.lc)
I-.4-o H H -GT

Eq. (3.8)

PTSS: c := i+--:+-=.4--o- o +..f 0-- Z 4 ; Eq. (3.9),
H (A.id)

where we define the symbols as we go along. Thus, - (M denotes

the "feedforward" operator, while --o(E{Q}) denotes the (ensemble)

"feedback" or scattering operator. The ensemble Feynman diagram (FD)

equivalent of the FOR (A.la) is just (A.lb), with (A.Ic) giving the

corresponding ensemble FOS, and (A.ic) the PTSS, obtained by iteration of

(A.lb) or from (3.9) directly.

A.1-1: Stochastic Solutions

As we have noted above [cf. Eq. (2.8) et seq.] the solutions to

the Langevin equation (2.3) are the various statistics of the field ,

e.g., here the moments <x>, < 1y2> , etc.
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Let us consider first the mean field <a>. Taking the average of

(3.9), for example, gives directly

< CL> = (H + Z <.(n)>a , (A.2)
n: 1

which shows that all (nth order moments of are required. The

diagram equivalent of (A.2) is, from (A.id),

4==:= [1+ + + ... ] ; with
<CY> m<Q>' MI1<QI1M 2Q2> H

0 = <Q>; - Q = < Q.QR> .  (A.2a)

(n)

There is a second approach which leads to an equivalent determin-

istic formulation, which is usually more effective for approximations.,(d) b
Defining a deterministic operator by

6d)< o <6> , (A.3)

we may again average (3.4) and use (A.3), to get

<c(> a + Qd)<K> - (j1-1(d))la = A + 0 - (d) (A.4)
H IH H 71 H'~))n

or, in diagram form,

= +_

H I(d) H
Q1

d) (n)]VII rl

1 H

(A.4a)

respectively.

Equation (A.4) is a form of Dyson's equation (DE), where now the

equivalent deterministic scattering operator, Q(d), or (EDSO), is the

analogue of the "mass-operator" (Q) in quantum electrodynamics (cf. 9160 ,
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[24]; [23]). The EDSO is always an integral, or global operator, over

all pertinent space and time, and has the form

d) =Z (R,tj Vl't) : Ao <Q> ; A = <QMQ A)>-  *M)J

m=0 m m =1 -

(A.5)

which at once permits a hierarchy of approximate forms, by stopping with

term (m> 1). The diagram equivalent of (A.5) is

(d) = , = 0+ [ ' ,. 4.-,]m=1 [+ _ o + ;0 ]m=2+...

(A.5a)

Similar concepts may be applied to higher-order moments of the field.

In fact, we may write the following FOS for the second-order, second

moment of the field:

<a2>; ~ () M(d)
12 1 2 12 =I12612

(A.6)

where the EDSO, (d) is defined by' 12 '

Q12)<I <Q1 Q2 c 2> , (A.6a)

cf. d) (A.3) above. Equation (A.6) is a second-order Dyson equation,

analogous to a form of the Bethe-Salpeter equation in quantum electro-

dynamics ([21]; 60, [24]). Analogous to (A.4a), we have
Q(d)
12

1 : + W -M* • ; Eq. (A.6a);
12 12 12 12 12

212 ( 1 1 21

+n 0* "* •etc., (A.7a)
12 1 2
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with obvious extensions of the second and third diagrams in (A.4a). The

EDSO, (A.6a), is the extension of (A.5a):

d d d_-d : +*be (A.7b)
12 12 1 21 2 1 2 m=O + "'b

Higher order Dyson forms of the FOS, like (A.6), can be constructed

for<a1 ..-mc >. In addition, various approximations can be instituted, in
I(d) 1 m
Q (series modification) where the series are infinite (for some form of

strong scattering), or by truncation, for "weak" scattering (1st-Born

approximation, for example [cf. (5.1)]), where one stops at the dotted line

in (A.ld), (A.2a), with n= 1 in (A.4a), etc. Unfortunately, space does

not permit us to pursue these topics further here.

A.1-2. Received Waveforms

The expression for the received waveforms, after sensing by the

receiving array (R) may be similarly diagrammed. We start with (A.1),

etc. applied to (4.1) and (4.2). Thus, we have

d

-- ; <9> - " etc. cf. (A.4),

d

(A.8a) and, in PTSS form, cf. (A.ld),

Eq. (4.2):

Kz 001~ ~--*]-~- + +
11 22 11 22 1 2 11 22 22 22 11 11

- 40 +] ...
11 22 22 22 11 11 12

(A.Sb)

The diagram of the mean field is given at once by (A.2a), or (A.4a),

on multiplying the receiver operator R since <X> = R<>. The diagram for

(4.5), in PTSS form for <XIX 2> is, similarly by direct expansion and

averaging,
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Eq. (4.5):

121 2 21

11 22' 1 2 2 2 1 1 H2

(A.8c)

from which the various higher-order moments of Q (at points 1,2) appear

clearly.

Appendix A.2 Canonical Scattering Operator Formalisms:

Basic Decomposition Principle

For this it is necessary now to use a canonical formulation of the

scattering operator, Q, and in particular, the author's concept of a

Basic Decomposition Principle (BDP), which permits both a statistical and

physical quantification of this operator in terms of differential scatter-

ing elements (dse's) which, in turn, can be identified with specific

physical mechanisms. Again, space limitations allow only the briefest

summary of results below.

We write the following canonical expressions

Q OM r~t r',t ) = f dt' f dN(Zir',t';t),,h,,(t-t',tlr',r,....)

- ! R

d ora11( r t l r ',t ' ) (  ) r ' , t '  (A .2-1)

where

dNM = the number of available dse's in the domain d.,1; ,-dN( ) is a
"counting" functional.

hi = weiihtinq function, rt "esenting the reradiation response of

a dse, now postulated to be a linear filter;

o = the local interaction operator, determined by the Langevin equa-

tion (and boundaries), relating the dse and incident field.

(A.2-1a)
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HereZR is the space of all radiation "events," e.g., scattering, and

Z (=jsx<xS) is the total random variable and parameter space (e); (r,r')

are vectors in the cobrdinate system of the scattering elements, AM. In

most cases we use the basic point-scatter model (BPSM) for hM:

hM(t',tl ' ....) = yo(r',t-t')M6(t-At dS ); At dS = f(t',t;r',r), (A.2-2)

where AtdS = tdS-a is the displacement (in time units) due to doppler

of the dse, away from some fixcJ position in AM and Y0 (> 0) is a "cross

section" which depends on the nature of the medium (or boundaries).

The inhomogeneous character of the medium (and boundaries) is of

two types, A, B. We have, with defining conditions:

A. The Inhomogeneum: (0)X 17i o -+ <O(1), co X f (A.2-3a)

B. The Discontinuum: Xol +(>>o(]), w(r,t) = E(r,t), etc. (A.2-3b)

where the latter represents a "hard" boundary and the former represents

comparatively small changes in the continuous medium. The Discontinuum

can be localized, e.g., particles, bubbles, etc., or distributed, like

the air/water interface. It is then seen that

A: do Inhomog 6(r-r')Qcoeff.('t')" B: dMIDiscont. (r-r')

(A.2-4)

where Qcoeff is the coefficient of w(r,t) in the Langevin equation, e.g.,

of (r,t) in (3.2), viz., Co( 2/ t2), etc. In consequence of the
0

assumed lack of motion of the fluid as a whole, there is no doppler

associated with o(r,t), whereas there is always a (random) doppler asso-

ciated with the Discontinuum elements, about some equilibrium position

of the ocean wave surface, or particle displacement in the volume. (For

a general treatment of these important doppler effects, see [361.)

Finally, to anatomize the various types of possible scattering inter-

action, we invoke the following Basic Decomposition Principle (BDP) for

the number of available dse's, dN, [I], [2]. The BDP states that:
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"From the viewpoint of radiative interactions among the dse's

which constitute the medium, the argument (dN, cf. (A.2-1)), of

the "counting" functional (fzRdN( ) = N, (A.2-1a)), can be decom-

posed into k= 1, 2, ... distinct subsets of available dse's for

radiation, each subset of which contains respectively distinct

and independent k-couple radiating elements only." (A.2-5)

This may be expressed, after some manipulation, in terms of (radiative)

mean values, e.g., <>R2 and fluctuations of the various densities, v

of different classes (k)O) of dse's, by

BDP: v(r,t) = v(k)( ,t) = <v(r,t)(O)>R + A v(k)(r,t)
k=l kl

<()> R  0 ()> ,  (k) = V(k) - <v(k)> (A.2-6)

since N6 = v(r,t),.r AM , when M= S or V (or B), of course. Here (k = 0)

represents the average number of dse's (discrete or continuous) engaged

in (re-radiation); k= I denotes the aggregate of independent, uncoupled

dse's, while k)2 are the sets of pairs (k=2), triples (k= 3), etc. of

dse's available for (multiple) scattering. It follows directly from

the BDP that all sets (k)O) are statistically independent. From this
it can be shown, furthermore, cf.[2I], that the fluctuations v (k) obey

(zero-mean), k h- order poisson statistics, under very general conditions,

reducing to gaussian statistics whenever the process densities are suf-

ficiently great. Figure A.2-1 gives a schematic illustration of the

0 decomposition principle presented here.

A.2-1. Operator Structure and Radiation Event Statistics

Further insight into the nature of the BDP, (A.2-5), and the canonical

structure of the inhomogeneity operator QM' (A.2-1), may be gained from the

following. It can be shown for small regions dAM in which dQM is accord-

ingly the scattering operator, that the BDP can be anatomized as follows,

cf. Fig. A.2-1:

k (k) d.'. l a(k) (k),(k),

A- d7 (A.2-7a)
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dA k1 k=2 k=3

dNN1
dNC 0

.A 0 ++

_ _ (k) .(ldN 1) (?-dN 2  (3) dN(3 )

dA k=1 -(k);dA dA dA

dA k:O k=1 k=2 k=3

< (0)R A() (3)
<d d dn~2  dn

0

+ + e
0

6 3 )o n<0

S<V(k)> AV(k) dn (k)

k=1 R dA

[Cl as s ica1"]: Av (k ) = 0, k>O

FOM AvO ), AV(1) 0

Figure A.2-1 Decomposition Principle: dv = k (k) dN k : scatter-k1 dN k=1
ing domain resolved into hierarchy of independent, k-coupled

scattering elements.

where dA is a linear (operator) functional, with

MB: == (k) (k) (k) (A. 2-7b)
~M Ai k=l 'oM

over the entire region (AM) of scatterers. Here ( r ( ,t) is the

density of k-coupled scattering elements ("quasi-particles") in .'M" The

quantities y (k) a (k) are respectively the scattering "cross-section" of
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the kt --order "quasi-particles," and an appropriate weighting function,

noted below. Thus, the BDP shows how a scattering region is decomposable

into independent groups of interacting elements. [This decomposition has

certain analogies with "Cluster Theory" in the statistical mechanics of

a classical nonideal gas [42], but in any case we are not concerned here

with the details of the k-tuple interactions.] Each k-tuple is entirely

equivalent to a th - order (classical) "quasi-particle," in the language

of particle physics ([41], Chapter 2). Thus, (A.2-6) can be interpreted

as a sum of different densities of "quasi-particles," which interact with

the incident field to produce corresponding orders of single- and

multi ple-scatter.

Comparing (A.2-7b) and (A.2-1) specifies XAM, namely,

(BDP): Q (k )(k)h(k)(tkt,t r .. )do(r,tif t')[)],tA(B P) Q = I t'I LX Yo F _ ,r ... - ,

_CO A M k=1
(A.2-8)

where a(k) = h(k) is a time-varying weighting function representing theF th
reradiation process from the k- -order "quasi-particles" (or scattering

elements*). Again, d0 is a local interaction operator (A.2-1a), deter-

mined by the particular Langevin equation (3.2), for example (A.2-4) et seq.

The key result of the BDP is that it removes our having to specify the

details of the radiation interactions within the kth -order "quasi-

particle." Instead, we have a linear combination of quantities (~-y k) (k)

cf. (A.2-8), which are to be determined explicitly from the appropriate

physics of the scattering situation in question.

At this point we consider further the concept of "radiation events"

(R) (and their statistics), i.e., the interactions of the incident field

with a quasi-particle, followed by emission, for given space-time

*The vectorsr, r' are defined in a coordinate system based in .1M9 which is

generally different from the co6rdinate system relating source (T), the

"ideal" observer in the field (at P(R,t)), or the receiver (R), cf. Fig.

A.2-5.
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cobrdinates (S -(r,t)), i.e., ZSx. fixed. The classical description of

scattering Zclass) is thus analyzed into a two-component process:

Z xZ, and the classical statistical averages are > =
-class -sxexR avrae are class
< > = << >R>Sx, where < > = average over radiation events (ZR), and

< >Sx = average over spatial and parameter values.
The importance of this decomposition is that it permits us to deter-

mine the overall statistics of the v (k). This is accomplished by our

first noting that the fluctuation Av(k) in the number of kt-- order

radiation interactions 'in AM is given by (A.2-6).

Furthermore, we have the identity

h :0 h.)(O)>R o k o k + 7 k). (k) ~(k)C(k) (k) (k) (0) +k0 (k)h(k)(k) ( hF (o nF

k= 0 (A.2-9)

so that by (A.2-7b)

(0 = 
M O) + - (k)h(k)Av (k)) (A.2-9a)

It can be readily shown [11] that the radiation-event statistics (RES)

of the Av(k) are zero-mean poisson, with the n h--order characteristic

function (c.f.)

1 .n nnF(k ) ( ic,it lz s e A v 
(k))__= exp l.nR (k) [exp( i=I"  ) i = ]dAl . i

(each k >1, any n,>1); AI... = A1 .A2 ... ***n ,  (A.2-10)

in which i;=i ,...,i, ; it= it I ... it and Rn n =t't ) >0

(k,n> 1) is the associated process density. Since the radiation events for

different k are independent, the complete (conditional) c.f. of the

(k)k
Aj k) >l 1s

F ) = Fk) (A.2-11)k=1

The overall statistics of (k)h(k)A1.J(k) are found from the (nt h - order

Fourier transform of) <F(k)> , and for-\ k(k) from the F.T.
n S,,0A
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F Z }. Thus, a central problem in applying our canonical development

here is toedetermine the process densities R(k) for the specific physicaln
problem in question. We note some examples below is Sec. A.2-2.

A.2-2 Examples: FOM and Classical Scatter Models

We begin by considering

A. FOMl Models:

As noted in Section 5, FOM models [28]-[30] are quasi-phenomenological

in that:

(i). they do not explicitly include boundary conditions, but rather

subsume them in the r(o) and y (k)h (k) factors of the scattering
o F

operator, QM, cf. (A.2-9);

(ii). they permit only k= I (and hence k=0) types of radiation inter-

actions, namely, the so-called independent "point"-scattering.

This latter constraint ensures only "weak-scattering" in volumes

(M=V), and correspondingly for surfaces (S,B), e.g.,

H + M QteH

in (3.9), cf. (5.1) also, with the added condition that all

k-order (k 2) interactions in 6M are omitted: no multiple

scatter, cf. (5.8).

Thus, in the FOM cases we have the following relation for the governing

process density R(I )"
n

(k) n

R R(1) = a(l)() ( -r _ ), (A.2-12)n n M Z=2 Z Z-

where now 0(I) = average density of scatterers in the illuminated region

, (M= S,BV). From (5.9), (5.9a) we see that <,(1)> = i) v(k)= 0

k 2.

The original FOM models for surface scatter [28]-[31] postulated a

flat surface (.=0), but employed a dopplerized path delay, td, in h(k)

which implicitly contained the effects of the moving surface. FOM model

extensions, FOM(la), explicitly include the surface elevation - in the

doppler delay [36], viz.
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(1) (1) o(A.2-14)0 • _g ,- 9 i T O )

where now n is the normal to the (large-scale) component of the gravity-

capillary wave surface

n 1 xx : + I {( x+yy- z)nZ } (A.2-15)

g 2,+ 2 99!+x g

(0 ) =  (r)y(1), where again 0(1) is the mean

density of (independent) scatterers on the surface. FOM (la) and FOM(2)

thus incorporate explicitly the physical geometry of the (wave) surface.

The practical utility of FOM models is that they replace the often

very difficult problem of explicitly evaluating the bcundary conditions

at the scattering elements, by introducing a time-variable weighting func-

tion yo , or y0 ( ), which also may include the extended doppler

delay (A.2-13) [36]. Simple choices of y h are then tested against

experience [43]-[46]. The limitations of the FOM models are threefold:

(1). They lack explicit physical structures. [This can be to a

considerable extent overcome by using FOM(2) models, cf. above];

(2). They are quasi-phenomenological, namely, they require a suitable

choice of h(1) and consequent calibration to the problem at hand; andF
(3). They (currently) omit multiple-scatter effects, or diffraction

(e.g., =(k)=0, k) 2). [This is also a limitation of most "classi-

cal" scatter models, as well [25]-[27], [37]-[39], [48], but see [51].]

B. Classical Scatter Models:

Classical scatter models cf. [25]-[27], [48], as noted in Sec. 5

earlier, in their practical formulations for the most part neglect multiple

scatter effects (k0 2), so that, in our formalism, cf. Appendix A.1,

(O): v(i) I V (k) 0, k>,2. In the important cases of surface scatter, for

example, it can be shown on comparing the classical approximations, namely

Kirchoff and perturbational boundary evaluations [48], that now

A-13



y(0)  (o1(

y ( Y ( RS ng(T-iR), (A.2-16)

cf. (5.10) above, with (A.2-15). Equations (5.6)-(5.7c) again apply here,

so that

KQ surface = _{g.(iT-iR)J Ing.T-. 2 R]2> - <Q> 1<> 2  (A.217)

for the covariance of the incoherent scatter from a typical random (wave)

surface. A detailed evaluation of (A.2-16) is described in [50], Part I,

and extended to include explicit doppler measures in Part II. Higher-order

moments are found similarly, viz.

12 3 surface <Yol' ) 'yo2 2 'yo33

with the help of (A.2-16) explicitly, see [50].
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Appendix A.3 Bayesian Estimation: A Decision-Theoretic Formulation

Here we briefly summarize the needed main elements of the decision-

theoretic formulation of signal estimation theory [15], [58], [20].

For an estimator we write

=1 (21X) = gE(X), (A.3-1)

where e = (all,... ,) is a set of signal parameters (or waveform samples,

etc.) to be estimated; X = (XI,... ,X) is the set of received data

samples in which the estimate is to be based; the "decisions," or esti-

mates made are denoted byY = ( 1 ... ,), and o in Y. indicates the a

priori probability (density) governing the parameters a, e.g., a = a(),

or S in a(2). [We note that Ya is an estimator for all permitted X,

while for a particular set X = X', Y. becomes an estimate.] The decision

rule 6 is here 6(Y X) = 5(y-Y0(eIX)), which is an (M-dimensional) delta

function. When Aa (=gE) is given, i.e., the estimating receiver gM(X) is

specified, the average error (or risk) is determined from

R(a,)S or e f a(S or _)dS (or de) .J Fn (XIS(2))C(S or o,Y )dX
4 (A.3-2)

where C is an appropriately chosen cost function, naturally proportional

to the measure of error selected. The estimatorlYa is a point estimate,

and Fn is the conditional pdf of X, given S(3).

Another useful type of estimation procedure is interval estimation,

defined by the probability P that a particular point estimate, f (for given

X) falls within (1-± \) 100 of the true value of the quantity [S waveform,

or 0 = parameters in S(f)] being estimated, viz.:

P{(I-A)[S or -1] < Y (S orX) < (I+)[S or], 0 < I

(A.3-3)

where \ is a measure of the prechosen confidence interval selected, - S to

+XS for example. In the case of a single parameter 1), for instance, we can

write

A-15



P{Tl- ,)e < Voeil) -< (I+X,)8j = fWI (-Ya(C) )d-Y., (A.3 -4)

y'ex'~ (ix~e} (1-X)8

where Wl(YIe) = p(YfO) is the conditional pdf of the estimator Y, con-
ditional on 0, formed here from p(YIO) = frFn(XIS(0MY ej)L, with

obvious formal extensions to the multidimensional cases, cf. [16], [58],

[20]. The unconditional pdfs of the estimators themselves are obtained

from p(y) = <p(YIS or 0)>

We emphasize that,., is a point estimator, embodying the specific

structure, gE (A.3-1), of the receiver performing the estimation. On

the other hand, interval estimators, as expressed by P, (A.3-3), (A.3-4),

yield a probability which is a measure of the efficiency of the point

estimator for any particular application (i.e., choice of X). The

average error (or risk) (A.3-2) measures the expected cost or average

error in using Ya, considered over all possible {X} received.

For optimum, or Bayes estimation we seek estimators ! which minimize

the average error or risk R(a,6), (A.3-2). The general form of the re-

sulting y, depends, of course, on the choice of "cost" or error function

C(S or 0,y.). For example, for the quadratic cost function (QCF)

(Co-y2 = co  (6n-y,)2 (A.3-5)

the associated optimum estimator is found to be (cf. Chapter 3, [58], Chapter

21, [20]) the set of equations

,. )F~n (X'S('.))du, ( .36

QcF = o()Fn(XS(o))d/ ) F n (A-6)

with -- , o(Ea) -o(S), dO -dS in the case of estimating signal waveforms.

Note that Y* is generally a nonlinear operator on the received data, X.

Another cost function of considerable interest is the simple (or

rectangular) cost function (SCF) given by

M
Cc [ A-('-e)] (A.3-7)
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with appropriate choices of Co, A to ensure meaningful results (e.g., posi-
m

tive errors, etc.). Minimization of average risk here leads directly to

(cf. Sec. 21.2-1 of [20]) the following relations determining Y*SCF:

I - log {G(%')WjL%)}j= 0, all m 1,.. .,I, (A.3-8)

m m m

where Wj(Xly"=") - <F (XdS(y"_,O')?> e ,  /oy , anJ(41m N--n e -=6-y- m m

o(yX@:e.) =<a(y@ ,0')>,, with 0' = all 0. exceptS@. The condition (A.3-8)

determining y* {* is preciseiy that determining the unconditional

maximum likelihood estimates (UMLE's) of e = {e4, viz. Y* here. [Ifm m
O(e) is omitted in (A.3-8) one has the corresponding conditional maximum
likelihood estimates (CMLE's) of the {9i}. The extension of (A.3-8) to

waveform estimation is formally immediate: one replaces e by S, *(0@)

by a(S,), Wj(Xl0,) by Wj (JS@), etc., with 11 1,... J now.]

In summary, we remark that:

I. The maximum (conditional) likelihood estimator (CMLE) maximizes J
the probability of a correct decision, without regard to

incorrect decisions and their costs;

II. The maximum unconditional likelihood estimator (UMLE) maximizes

the probability of a correct estimate, when all possible (signal (A.3-9)

or parameter) values are taken into account, again without

specific regard for incorrect decisions and their errors;

III. The optimum quadratic estimator Y* (A.3-6), is an uncon-• --OCF' "

ditional least mean-square error (LMSE) estimator, which

accounts on the average for incorrect decisions and errors.
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